tokenpocket钱包app安卓下载|ethercat开发
tokenpocket钱包app安卓下载|ethercat开发
EtherCAT从站开发入门-CSDN博客
>EtherCAT从站开发入门-CSDN博客
EtherCAT从站开发入门
最新推荐文章于 2024-01-05 16:53:58 发布
ethercat_i7
最新推荐文章于 2024-01-05 16:53:58 发布
阅读量2.5w
收藏
113
点赞数
8
分类专栏:
EtherCAT
文章标签:
EtherCAT
xmc4800
从站开发
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/ethercat_i7/article/details/80430709
版权
EtherCAT
专栏收录该内容
16 篇文章
83 订阅
订阅专栏
EtherCAT从站开发中,除了常见的ESC(FPGA IP)+DSP方案外,TI、瑞萨、英飞凌等芯片厂家也纷纷推出了集成ESC功能的芯片,本文介绍英飞凌XMC4800芯片的入门使用,并在后续文章中,基于英飞凌提供的从站例程,介绍EtherCAT基本原理和具体的代码实现过程。
一、软硬件环境
(1) XMC4800 Relax EtherCAT Kit开发板 (2)编程软件DAVE4.3.2 (3)测试主站Twincat v3.1
二、 获取例程
从英飞凌官网下载开发板的例程: http://www.infineonic.org/document/detail/index/id-216122 解压后如下图所示: 其中SSC目录下已经包含SSC5.1相关的源码。
三、导入工程
打开DAVE,File->Import导入之前下载的工程:
四、编译并下载
右键点击XMC4800_ECAT_Relax_EEP工程并选择Build Project,编译完后如下: 点击工具栏上的Run或Debug按钮将工程下载到开发板。
五、使用Twincat3进行测试
将例程中的从站设备描述文件XMC4800_Relax.xml拷贝到Twincat3对应目录: C:\TwinCAT\3.1\Config\Io\EtherCAT
打开Twincat3并新建工程,扫描设备:
扫描到从站后,就可以控制LED灯的亮灭,并检测到开发板上的按钮状态。
点亮LED1和LED3:
检测按钮状态:
六、一致性测试
使用ETG官方提供的一致性测试软件CTT对从站进行测试,结果如下: 可见,从站可通过一致性测试。
优惠劵
ethercat_i7
关注
关注
8
点赞
踩
113
收藏
觉得还不错?
一键收藏
知道了
17
评论
EtherCAT从站开发入门
EtherCAT从站开发中,除了常见的ESC(FPGA IP)+DSP方案外,TI、瑞萨、英飞凌等芯片厂家也纷纷推出了集成ESC功能的芯片,本文介绍英飞凌xmc4800芯片的入门使用过程,并在后续文章中,基于英飞凌提供的从站例程,介绍EtherCAT基本原理和具体的代码实现过程。一、软硬件环境...
复制链接
扫一扫
专栏目录
EtherCAT从站开发
caixf的博客
01-02
490
开发一个EtherCAT从站,并将从站连接到EtherCAT主站
贝福 EtherCAT 开发板 应用手册
11-28
贝福 EtherCAT 开发板 EL9800 应用手册,解释说明了 EL9800如何使用的步骤
17 条评论
您还未登录,请先
登录
后发表或查看评论
EtherCAT从站快速开发
02-14
简化XML生成,简化编程,快速入门
提供 XML快速生成器
简化编程Keil程序示例:
2个函数即可完成ESC的初始化及调用
EtherCAT从站控制芯片TMC8462、8461、8460
02-26
EtherCAT salve从站控制芯片 TMC8462、8461、8460EtherCAT的研发目标是将以太网应用于需要短暂数据更新时间(也称周期时间,≤100 µs)的自动化应用,且通信抖动小(为了实现精确同步,≤1 µs)、硬件成本更低。
EtherCat 从站控制芯片
最新发布
weixin_46024116的博客
01-05
973
EtherCat 从站控制芯片简称ESC,是实现EtherCat数据链路层协议的专用芯片,用作处理EtherCat数据帧,并为从站控制装置提供数据接口,简单说就是一般我们的MCU不支持EtherCat(当然也有支持的,支持的就不需要ESC),ESC就是个转换器,一般和MCU选择串行(SPI)的方式来通信。ESC存储空间:前面讲到ESC具有64K字节的DPRAM,前4K(0x0000–0x0FFF)字节的寄存器空间。
Ethercat学习-从站源码生成
西澳峰的博客
03-29
4787
移植平台GD32F450,从站芯片AX58100,EtherCAT Slave Stack Code Tool (SSC) V5.12 注意:如果安装了SSC5.11,还可以正常安装SSC5.12,如果安装了SSC5.12的话,想再装SSC5.11,需要先将5.12卸载干净,暂时还没找到卸载SSC的方式。
EtherCAT从站开发要点
专注嵌入式软硬件开发。
07-18
3059
本文主要简述EtherCAT从站开发关键知识点:COE对象字典、PDO、SDO、状态机、同步模式、关键API接口等。
EtherCAT从站开发设计指南,总线远程IO篇
2301_79171935的博客
08-15
1081
EtherCAT是全球响应能力最高的工业以太网技术,广泛应用于工业自动化,本文从工程实践出发讲解设计EtherCAT从站
【EtherCAT从站开发入门笔记】
MDJSJ_的博客
03-20
971
EtherCAT从站开发入门笔记
EtherCAT的实现和应用 - 从站软硬件设计
weiDev的博客
03-21
3577
EtherCAT的实现和应用 - 从站软硬件设计
尝试一文说明EtherCAT
weixin_45682319的博客
07-17
826
学习EtherCAT的过程中从参考文章中提取出的内容,认为是比较关键的部分,希望能对你有所帮助,若理解有误也请指正。
英飞凌可视化软件DAvE使用中文指南.pdf
07-10
DAvE是英飞凌公司为了方便用户开发的免费得的可视化工具,本文是其中文使用指南!帮助你减少问题
快速开发ETHERCAT从站(使用ArduCAT)
05-25
ArduCAT是Arduino Compatible 开发板。通过Arduino技术,大大简化EtherCAT从站的开发。ArduCAT开发板包含两路可用于EtherCAT实时以太网的100BASE-TX网口,所以它特别适合基于PC的自动化方案。ArduCAT使用ATMega1280 处理器,兼容Arduino Mega开发板,并具有完全相同的引脚定义。板上采用开关稳压器提供5V 或3.3V的2A直流输出,且发热甚微。除配套的开源Arduino库外,还配有从站应用层代码自动生成工具,用户只需编辑EXCEL表格便生成完整的协议栈,大大简化了通信协议的代码的开发,使用户能够将注意力集中在开发具体的应用上。
EtherCat从站开发使用说明
04-12
1-EtherCAT从站开发板使用说明; 2-EtherCAT SPI通信程序流程分析; 3-EherCAT从站代码架构解析; 4-EtherCAT_ET1100_Datasheet_all_v1i8-解锁; 5-Twincat支持EtherCAT的intel 网卡列表(芯片型号); 6-从Beckhoff...
EtherCAT从站开发指南.zip_ETHERCAT_EtherCAT Master_EtherCAT 站_EtherCAT中
07-14
EtherCAT从站开发指南中文文档,含软件和硬件选型介绍
BECKHOFF TwinCAT连接 NI EtherCAT从站.pdf
03-22
BECKHOFF TwinCAT连接 NI EtherCAT从站
EtherCAT ET1100从站信息接口介绍
热门推荐
ethercat_i7的博客
10-10
2万+
ESC使用EEPROM来存储所需要的设备相关信息,称为从站信息接口SII(Slave Information Interface)。
以Beckhoff 两通道模拟量输入模块EL3102为例,简单介绍 EEPROM中存储的各种信息的位置和含义。
一、EEPROM内容一览
根据ET1100的datasheet,EEPROM中的存储结构如下:
以EL3102为例,从T
EtherCAT主站实时性分析
ethercat_i7的博客
01-04
1万+
一、实时性的意义
在主从DC同步模式下,主站需要以非常精准的时间发送过程数据,如下图所示:
二、实时性的关键
如下图所示,影响实时性的关键因素是操作系统和网卡驱动,前者需要将过程数据准时送出,后者需要优化网卡驱动,即"准时出发,路上不能耽误"。
操作系统的实时性体现在需要非常准时地调用EtherCAT主站协议栈的发送函数,例如SOEM的发送函数是e
ethercat从站开发流程
05-14
EtherCAT是一种实时工业以太网通信协议,由德国Beckhoff公司开发。在EtherCAT网络中,从站设备扮演着从属角色,接受主站的指令进行控制操作。下面是EtherCAT从站开发的一般流程:
1. 硬件设计:选择合适的EtherCAT芯片,并与MCU进行连接,然后进行硬件设计。确保从站硬件符合EtherCAT标准。
2. 软件开发:编写从站设备的驱动程序、控制逻辑和EtherCAT协议栈。
3. EtherCAT从站实时栈:使用EtherCAT从站实时栈开发包,搭建起整个EtherCAT从站框架。
4. EtherCAT从站配置:使用EtherCAT Master工具对从站进行配置,将其添加到EtherCAT网络中,并完成地址分配等设置。
5. EtherCAT从站测试:使用EtherCAT分析工具对从站进行性能测试和分析。对EtherCAT设备进行全面的性能测试,确保EtherCAT网络的高性能和可靠性。
6. EtherCAT应用程序的开发。EtherCAT从站应用程序是整个系统的核心。根据要求完成EtherCAT控制器的开发。
EtherCAT从站的开发流程非常重要,确保了EtherCAT应用程序和硬件设备的连接,使其在工业控制领域可靠的被应用。
“相关推荐”对你有帮助么?
非常没帮助
没帮助
一般
有帮助
非常有帮助
提交
ethercat_i7
CSDN认证博客专家
CSDN认证企业博客
码龄7年
暂无认证
38
原创
8万+
周排名
190万+
总排名
35万+
访问
等级
3445
积分
659
粉丝
229
获赞
217
评论
1380
收藏
私信
关注
热门文章
EtherCAT主站SOEM在Ubuntu上的移植
25614
EtherCAT从站开发入门
25184
EtherCAT ET1100从站信息接口介绍
23340
CANopen原理--心跳
19899
CANopen原理--SDO(upload)
16840
分类专栏
freeRTOS
1篇
sqlite3
1篇
EtherCAT
16篇
Etherlab
7篇
电机控制
2篇
CANopen
5篇
linux
5篇
最新评论
EtherCAT主站SOEM在Ubuntu上的移植
m0_53295178:
您会控制了吗?能发一下样例代码吗?1323992328@qq.com
伺服驱动器-速度环设计
m0_52379570:
您好,中频宽度的定义具体出自哪里呢,有些资料定义中频宽度为h=lg(Tw/Tl)
CANopen原理--心跳
Way-Jay:
可以针对从站自己写一个掉线的判断
CANopen原理--SDO(download)
m0_56338463:
你好,楼主 可以分享一下您的工程文件吗如果可以 真的谢谢啦 2278517559@qq.com
EtherCAT主站SOEM源码解析----EEPROM访问
ljymoonlight:
请教一下: xml中有modules 和 slots 怎么 在EEPROM中存储?
从站用怎么对应PDO解析?
最新文章
freeRTOS在28388 CM核上的移植
sqlite3源码理解-sqlite3_open
linux设置进程CPU亲和力函数sched_setaffinity()简介
2023年1篇
2020年3篇
2019年1篇
2018年14篇
2017年9篇
2016年10篇
目录
目录
分类专栏
freeRTOS
1篇
sqlite3
1篇
EtherCAT
16篇
Etherlab
7篇
电机控制
2篇
CANopen
5篇
linux
5篇
目录
评论 17
被折叠的 条评论
为什么被折叠?
到【灌水乐园】发言
查看更多评论
添加红包
祝福语
请填写红包祝福语或标题
红包数量
个
红包个数最小为10个
红包总金额
元
红包金额最低5元
余额支付
当前余额3.43元
前往充值 >
需支付:10.00元
取消
确定
下一步
知道了
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝
规则
hope_wisdom 发出的红包
实付元
使用余额支付
点击重新获取
扫码支付
钱包余额
0
抵扣说明:
1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。 2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。
余额充值
【EtherCAT】4.实现一个成熟的从站 - 知乎
【EtherCAT】4.实现一个成熟的从站 - 知乎首发于EtherCAT切换模式写文章登录/注册【EtherCAT】4.实现一个成熟的从站小皎皎一只可爱的小皎皎学习EtherCAT最好从从站开始,因为从站包含了EtherCAT大量原理,例如状态机,PDO映射等。学习从站代码有利于理解过程数据如何传输,XML有什么作用。本文介绍一些从站的基础知识,以及如何设计一个功能完善的从站。从站硬件无论是以ASIC还是FPGA的形式,ESC都是从站的核心,主站通过读写ESC的DPRAM空间实现数据传输。ESC通过PDI接口将数据发送到MCU,在MCU中执行实际的应用层操作。ESC根据倍福公司的IP core设计,目前主流的ESC芯片包括: ASIX公司的AX58100芯片;BeckHoff自己的ET1100芯片;Microchip的LAN9252芯片;FPGA:ET1810(altera)和ET181(xilinx);由于都是基于BeckHoff的IP core设计的,因此这几个芯片在实际功能上差距并不大,区别在于DPRAM的大小,SM的数量,FMMU的数量,PDI的方式等。芯片网口FMMUSMRAM(kBYTE)数字IOSPI slaveLocal BUSAX581002内部PHY,1MII88932Y8/16 asyncLan92522内部PHY,1MII34432Y8/16 sync/asyncET11004EBUS/MII88816Y8/16 sync/async关于芯片的详细参数,可以访问ESC具有各类AL寄存器供主站访问,但实际不执行具体的应用层操作,从站应用层的管理由专门的MCU进行。stm32有强大的性能和完善的生态,因而是应用层使用最为广泛的芯片,也可以采用其他的硬件例如Arduino或者ESP32实现应用层逻辑,但是要支持对应ESC的相关PDI接口。一般来说,从站硬件系统如下图所示:从站最小系统从站软件从站帧的链路层功能都是由ESC完成的。从站软件运行在MCU中,主要执行的是应用层的操作。MCU通过PDI接口读取ESC中的PDO和SDO数据,然后执行应用层的处理,例如状态机,COE,EOE等相关逻辑。MCU需要一套协议栈执行相关的逻辑,目前使用最多的从站协议栈是EtherCAT技术组(EtherCAT Technology Group,ETG)为会员提供的Slave Stack Code(SSC),SSC支持几乎所有应用层协议栈(EOE,COE,FOE)等,同时还提供了对专有协议Cia402等的支持。除此之外,SSC还提供了专门的工具来配置协议栈和PDO。SSC的缺点是,它是针对BeckHoff自己的PIC和ET1100芯片写的,如果使用stm32或者其他通用处理器,需要手工移植代码。ssc的代码框架除了SSC之外,另一个比较有名的EtherCAT开源协议栈是SOES(GitHub - OpenEtherCATsociety/SOES: Simple Open Source EtherCAT Slave),SOES支持EOE和COE这两种较为常用的应用层协议,同时支持静态和动态的PDO映射。SOES的代码相较于SSC精简很多,代码可移植性较好。商用从站协议栈中,比较具有代表性的是KPA协议栈(https://koenig-pa.de/products/ethercat/kpa-ethercat-slave-stack)。作为商用协议栈,KPA协议栈几乎支持所有的EtherCAT特性,包括: 邮箱协议:COE,EOE,FOE,SOE,VOE 分布时钟DC;不同的扫描速率;从可移植性的角度,KPA协议栈实现了一个硬件抽象层,支持不同ESC和主控芯片的数据交互。下图是KPA协议栈的程序结构,从图中可以看出,数据从DPI传输到MCU后,首先通过的是硬件抽象层,主循环轮询AL事件来获取过程数据和邮箱数据的更新,然后基于对象字典更新PDO和SDO。从站功能操作系统层对于实时性和同步要求极高的场合,一般一个系统运行一个从站任务就好了,例如电机驱动从站,此时不建议使用操作系统,直接进行SSC协议栈移植即可。但是实时要求不强的场合,每个任务/接口使用一个从站是很浪费的,毕竟ESC还是有点小贵的,对于任务很多的从站,还是有必要上嵌入式实时系统。下面介绍一下嵌入式操作系统的作用。操作系统层的主要作用是合理对从站任务进行调度。作为现场总线的一部分,一个EtherCAT从站一般至少包含两个任务,一个从主站获取EtherCAT数据,另一个与控制设备(比如电机或CAN总线)交互。在多任务环境下,为了确保EtherCAT通信的实时性、增强任务调度的合理性、有效利用系统资源,从站应当基于实时操作系统进行开发。相较于Linux等操作系统,嵌入式操作系统具有如下特点:小型系统:由于嵌入式设备功能明确,操作系统往往与应用程序编译在一起运行。实时性:嵌入式操作系统往往是实时操作系统。很多嵌入式设备对处理的实时性有严格要求,这种实时性是通过操作系统层面的任务调度机制、任务优先级的设定和应用程序的快速处理来达到的。可移植性:由于嵌入式设备的应用场景多样,复杂程度千差万别,应用程序的大小各不相同,移植的需求是频繁发生的。ucos,vxworks,FreeRTOS和RT-thread是较具代表性的实时操作系统。这里以RT-thread为例介绍嵌入式实时系统的组成,RT-thread不仅是一个实时操作系统,也是一个完善的嵌入式软件生态。它的底层是RT-thread内核,基于内核还提供了网络框架,设备框架,以及各类API。最后在应用层还提供了各类具体应用。RT-thread架构线程管理 RT-thread内核是一个RT-thread程序的核心,RT-thread内核是一个基于优先级的全抢占式多线程调度系统,在该实时系统中,线程是最小的调度单位,系统中除了中断处理函数、调度器上锁部分的代码和禁止中断的代码是不可抢占的之外,系统的其他部分都是可以抢占的,包括线程调度器自身。RT-thread的线程调度关系如下。在RT-thread 中,实际上线程并不存在运行状态,就绪状态和运行状态是等同的。RT-thread线程RT-thread最多支持256个线程优先级,0优先级代表最高优先级,最低优先级留给空闲线程使用。同时它也支持创建多个具有相同优先级的线程,相同优先级的线程间采用时间片轮转调度算法进行调度,使每个线程运行相应时间。线程间通信 RT-thread支持线程间的同步和通信。采用信号量、互斥量与事件集实现线程间同步,线程通过对信号量、互斥量的获取与释放进行同步。支持邮箱和消息队列等通信机制。邮箱和消息队列的发送动作可安全用于中断服务例程中。通信机制支持线程按优先级等待或按先进先出方式获取。时钟管理 任何操作系统都需要提供一个时钟节拍,以供系统处理所有和时间有关的事件,如线程的延时、线程的时间片轮转调度以及定时器超时等。时钟节拍是特定的周期性中断,中断之间的时间间隔取决于不同的应用,时钟节拍率越快,系统的额外开销就越大,从系统启动开始计数的时钟节拍数称为系统时间。RT-Thread 的时钟管理以时钟节拍为基础,时钟节拍是 RT-Thread 操作系统中最小的时钟单位。RT-Thread 的定时器提供两类定时器机制: 单次触发定时器:这类定时器在启动后只会触发一次定时器事件,然后定时器自动停止。 周期触发定时器:这类定时器会周期性的触发定时器事件,直到用户手动的停止定时器否则将永远持续执行下去。通常使用定时器定时 回调函数(即超时函数),完成定时服务。用户根据自己对定时处理的实时性要求选择合适类型的定时器。内存管理 内存是系统的重要资源,特别是对于资源紧张的嵌入式设备来说。RT-Thread将内存分为动态内存堆和静态内存池,对于动态内存的申请,RT-Thread提供小内存分配算法,slab算法和memheap算法。为了避免内存碎片,提高分配效率,RT-Thread还在.data段提供一个静态的内存池。设备管理 和Linux驱动框架类似,RT-Thread也通过I/O设备模型框架对外设进行管理。I/O 设备管理层实现了对设备驱动程序的封装。应用程序通过 I/O 设备管理接口获得正确的设备驱动,然后通过这个设备驱动与底层 I/O 硬件设备进行数据交互。设备驱动程序的升级、更替不会对上层应用产生影响。这种方式使得设备的硬件操作相关的代码能够独立于应用程序而存在,双方只需关注各自的功能实现,从而降低了代码的耦合性、复杂性,提高了系统的可靠性。硬件抽象层硬件抽象层的主要作用是提升程序的可移植性。与ESC的数据交互,是EtherCAT从站MCU最为重要的功能。MCU通过PDI访问ESC的内存空间,读取寄存器和过程数据,因此,有必要对ESC的数据访问进行封装,封装的目的是保证在MCU应用层能够通过通用的接口实现对不同类型从站ESC,不同接口PDI的访问。关于硬件抽象层的封装,SOES实现了所有硬件访问相关函数:应用层协议EtherCAT从站的目标是能够支持各类应用层协议,这其中最主要的是COE协议和基于COE的各类行规。此外还需要支持FOE,EOE,SOE等协议。COE:CANopen over EtherCAT,EtherCAT协议在应用层支持CANopen协议,并作了相应的扩充,CoE协议完全遵从CANopen协议。COE协议十分核心且复杂,在此不作过多介绍。EOE:EtherNet over EtherCAT,该协议支持EtherCAT能分段传递标准的以太网数据报文,使得EtherCAT协议同样能支持TCP/IP、UDP/IP协议。SOE:Servo Drive over EtherCAT。SERCOS是世界首个应用于伺服控制的协议。EtherCAT协议在应用层接口上兼容了这个协议,简称为SOE。SERCOS应用层协议为主站设计了信息接口,可以通过配置EtherCAT过程数据报文,实现周期性传递伺服驱动器的数据。FOE:File Access over EtherCAT。该协议可以使用EtherCAT总线上传、下载固件,刷新从站的固件。并且可以通过命令行工具加载或存储文件。结合实际需求,COE和基于COE的行规协议CiA402等是必须实现的,FOE、EOE作为程序的扩展功能有必要实现,而SOE不是常用需求。动态PDO映射静态PDO映射是将PDO变量“写死”在从站中,对于实际应用场景是十分不友好的,例如某个机型的电机需要实时传输电机温度,但在另一个机型中不需要温度信息,如果使用静态PDO映射,为了提升传输效率,删除温度PDO,则需要修改代码,烧写固件,更新XML文件。这样会带来巨大的工作量。特别是基于CiA402的驱动器来说,经常要根据上位机软件的需求修改传输变量。动态PDO映射允许定制PDO以满足客户需求,TwinCAT和KPA studio等上位机软件都支持以勾选的形式动态配置PDO。为了使得上位机能够修改PDO assign,需要在xml中配置mandatory为false(SSC在EXCEL)中可以配置。动态PDO映射的基本原理是操作对象字典的0x1C12和0x1C13对象,这两个对象分别管理输出和输入的PDO映射。过程如下:将Ethercat状态机切换到PreOP状态,此状态可以用SDO来配置PDO映射;清除PDO指定对象的PDO映射对象,即设置0x1C12-00,与0x1C13-00为0;PDO映射对象无效,即对0x1600-0x1603/0x1A00-0x1A01的子索引设置为0;重新配置PDO映射内容;0x1600-01开始的是RxPDO内容,0x1A00-01开始的是TxPDO;设置PDO映射对象总数;写有效的PDO映射对象索引到PDO指定对象设置PDO指定对象的总个数,即将映射对象个数写入到1C12-00h和1C13-00h转换Ethercat状态机到安全操作以上,配置的PDO映射将有效。分布时钟EtherCAT各个从站得到帧后会进行处理或者转发,这需要一定的微小时间。但当需要经手的从站多,或者数据量大的时候,积少成多会导致较大的延迟,并且电缆线内信号传输也占有一定的延时时间。分步时钟可以使所有的EtherCAT设备使用相同的系统时间,从而控制各设备的任务的同步执行,支持分布式时钟的从站称为DC从站。为使各个从站的参考时钟达到绝对同步,主站会计算各个从站的偏移时间,这个值会写入对应从站的系统时间偏移寄存器。在从站端,分布时钟由ESC芯片实现,ESC为从站控制微处理器提供同步的中断信号和时钟信息,分布时钟单元可以产生两个同步信号SYNC0和SYNC1,用于给应用层提供中断或直接触发的输出数据更新。MCU可以通过ESC的中断信息和时间漂移寄存器的值更新本地系统时钟。分布时钟是从站的重要功能,SSC和SOES都实现了分布时钟,可以参考这两者的设计实现该功能。SDK目前从站代码开发主要有两种方式: 基于现有的代码进行移植:目前对于成熟的ESC(ET1100、LAN9252、AX58100)都有比较成熟的解决方案。但移植仍然要求对代码较为熟悉,如果添加新功能较为困难,综合来看较为麻烦;基于从站软件生成:SSC,SOES和KPA都提供了对应的从站代码生成器,但是SSC是针对自己的的PIC32芯片的,仍然需要手动移植代码;SOES和KPA的从站软件都属于商用软件需要较高的授权费;因此通过一个SDK简化从站开发流程是有必要的,参考SOES的slave editor,SDK所需的功能如下:从站基本信息:允许通过界面添加XML的必要信息,例如vendor ID,product ID等;数据链路层配置,允许通过界面配置FMMU,SM同步管理器和邮箱;PDI的配置:允许通过界面配置PDI相关寄存器;PDO的配置:这是从站软件的核心,允许通过界面直接添加和管理PDO,由于PDO是从站最重要的功能,此功能将极大简化从站开发过程;代码生成和XML的生成。SOES的上位机软件从站性能从站响应时间从站响应时间是从站的性能指标,指从发送一帧数据,经过每个从站ESC的处理,到主站接收到这帧数据的时间。从站响应时间主要由硬件和网络结构,数据传输量决定,具体地:带宽:传输延时和带宽有关系,对于单个bit,从发送到确认,不考虑线路损耗的时间是(1/BandWidth)。假设EtherCAT网络的带宽是100Mbit/s,则每字节的传输延时是(1/100M)*8 = 80us;主站硬件延时:主站硬件同样存在延时,一般在几us左右;主站软件延时:主站软件一般会带来几微秒的延时,取决于主站的性能;从设备数量:每个MII/PHY接口的ESC会带来1us的延时,而EBUS接口的则只有0.3us;KPA studio的数据界面,在运行状态下可以查看从站响应时间。编辑于 2023-08-29 15:47・IP 属地浙江EtherCAT 总线驱动器赞同 2011 条评论分享喜欢收藏申请转载文章被以下专栏收录EtherCAT介绍工业以太网总线EtherCAT技
EtherCAT学习之路——概述 - 知乎
EtherCAT学习之路——概述 - 知乎首发于EtherCAT学习之路切换模式写文章登录/注册EtherCAT学习之路——概述白细胞 最近在做基于EtherCAT的项目,看了一些网上的博客,感觉写的都比较松散。虽然,自己也是才开始学习,希望能把这段时间学到的东西总结一下。这是倍福的官方介绍,有时间的可以看一下。1.EtherCAT简介 EtherCAT是由德国BECKHOFF自动化公司于2003年提出的实时工业以太网技术。它具有高速和高数据有效率的特点,支持多种设备连接拓扑结构。其从站节点使用专用的控制芯片,主站使用标准的以太网控制器。 EtherCAT是一种工业以太网技术,看到的大多数应用场景都是伺服电机。因为是基于以太网的技术,所以EtherCAT相比于CAN总线而言,速率上要快不少。EtherCAT可以达到100M的速率,而CAN只有1M。此外,EtherCAT还具备低延时和精准同步的特点。 在工业总线中,低延时、精准同步是用户的关键需求。试想一下,工厂中某个器件的生产需要A/B/C三个机器协同操作,原本预想的是A先操作期间,然后B把器件传递给C,C再操作。如果,A/B/C不同步,或者操作命令的传达有延时,A还没有操作完器件,B就已经开始进行传递了。这时要么器件损坏,要么就做出来个半成品。而EtherCAT相比于普通的以太网技术就有这两点的优点。2.EtherCAT基本原理 EtherCAT基本原理这一节PLC攻城狮的《浅析EtherCAT 总线》讲的还是比较清楚,推荐大家看一下。下面我就简单说一下自己的理解。 倍福官方对EtherCAT的传递机制的命名叫做:ON The Fly。图 2-1 On The Fly On The Fly技术可以从两方面来解读,第一个方面是以太帧“时分复用”。一般以太帧里都只包含了一个设备发送的消息,5个设备就会发送5条以太帧。而EtherCAT则是多个从站共享一条以太帧。就像图2-1中的火车,EtherCAT主站发出了“火车”(以太帧),各个从站则从这辆火车的不同的“车厢”(子报文)中提取或插入自己的“乘客”(消息)。这样一来就实现了以太帧的“时分复用”,只用一条以太帧(最大1486byte),就可以让各个从站都收发出自己的消息,大大的降低了通信的延时(这一部分《浅析EtherCAT 总线》里面讲的比较清楚,还没理解的同学可以看看)。 On The Fly影响的另一个方面就是总线仲裁了。所谓总线(例如CAN总线),就是大家都共用一条通道来通信,各个设备都挂载在同一条总线上。所以,当一个总线上的多个设备同时想要发消息的时候,就会产生冲突,所以,就有总线仲裁的机制。控制器决定当前时刻,谁来发消息,谁来“占用”这条总线。而EtherCAT玩了一个花样,EtherCAT的各个设备之间是一种P2P(Point to Point)的连接方式,这些设备根本没有连接在“同一条”总线上。下面是EtherCAT的连接结构。图 2-2 EtherCAT连接结构 图2-2中,最左边的是主站,后面的都是从站,各个从站下面还挂载了不同的设备。可以看到主站向从站1发送以太帧,从站1接收、处理完自己的子报文后,再把以太帧发送给从站;从站2接收,处理完自己的子报文后在发送给从站3;如此往返,直到最后一个从站n接收处理完自己的消息,再把这条以太帧返回回去。所以,各个从站之间根本就不会存在总线冲突。EtherCAT只需要预先配置好各个从站占用的子报文位置,也就是On The Fly技术,就可以解决总线总裁这一个老大难的问题,确实是一箭双雕。 当然,这种解决方案也是有它的缺点的。比如,从站数量非常多的时候,最后一个从站就需要等前面的从站一次次转发才能收到消息。当然,我觉得EtherCAT应该也想到了这点,应该也采取了某种机制来避免这种最远设备延迟的缺陷。但是,我还没深挖这个问题,所以,没看到相关的解决机制。如果有了解的同学希望能指教一下。3.EtherCAT系统组成 EtherCAT系统主要就一个主站和若干从站组成。如图3-1所示:图3-1 EtherCAT系统组成 EtherCAT一般使用软件的方式来实现主站,包括倍福的TwinCAT,Igh,KingStar等等都是基于一台实时操作系统的PC,通过以太网卡,来实现主站的功能。因为,主站不是我的项目重点,所以,目前了解的还不多。先挖一个坑,后面有时间了研究一下,再来补上。现在我是用TwinCAT的免费版来学习和调试的。TwinCAT本身是收费的,不过,它有试用版,试用版不具备实时功能,调试一下设备还是足够了。 从站的组成如图3-2所示:图 3-2 从站组成 从站一般是有3部分器件组成的:物理层器件、EtherCAT从站控制器(EtherCAT Slave Control)和微处理器(MCU)。物理层器件就是以太网的PHY芯片和网口,ESC是实现EtherCAT协议栈的专用ASIC,从站控制微处理器主要实现应用层(如CANopen)和用户自定义的程序。 看到这里没有通信基础知识的通信可能就有点懵逼了。物理层,数据链路层,应用层这些是个啥玩意?这里我就简单说一下,想要深入理解还是可以看看OSI模型,大多数的通信技术都脱离不了这个框架。图 3-3 OSI模型 这里偷了个懒,盗用一下PLC攻城狮的图片。OSI中有7层,EtherCAT系统中只用了3层:物理层、数据链路层、应用层。先降维的说一下这几层是啥意思。最基本的通信就是咱们人类说话,我就以我们普通对话来讲解一下这三层的意思。 物理层:人类的语言是通过嘴发声,声波在空气中传播,传递到耳朵,耳朵听音再汇聚到大脑,大脑最终判断出声音中的信息。我们的嘴、耳、声波和空气就是物理层。物理层的重点是信号在介质中的传递表示,不同的字有不同的发音规则,不同的频率和声调,比如“哦”,我们就需要发出“o”这个音,我们听到“o”这个音的时候,才能判断出“哦”这个字。计算机通信的原理和这个也是一样的,信号在光纤、电缆以及空气中传播,计算机需要判断电缆上的电平的高低来判断0,1bit。当然,计算机比人类要傻很多,它不知道“某句话”的“发音”是从什么时候开始的,什么时候结束的,所以,物理层还需要告诉它信号的起始时刻和持续的长度等等。 数据链路层:通过前面的物理层,我们已经具备了基本的发声的手段,通过嘴改变声音的频率、音调、音长等特征(通信系统中,天线或者光模块改变信号的电平高低、信号频率、调制方式等特征),让声音在空气中传播(通信系统中,信号在相应的介质中传播),然后,耳朵识别这些频率、音调、音长等特征(通信系统中,接收端的识别信号的电平高低、频率、调制方式),最终实现口到耳的传播。 但是,光是这样还足够实现通信。试想一下,你和你的几个朋友处在一个嘈杂的环境当中,远处有汽车的轰鸣,旁边还有小孩子在哭闹,你的朋友们每个人在抢着发言,大家七嘴八舌的,根本听不清对方在说什么。所以,你和你的朋友之间想要对话就必须克服两个困难,第一,屏蔽掉耳旁的那些轰鸣声、哭闹声;第二,需要建立一种对话机制,让大家互相可以听清对方的话语。 第一点中描述的那些轰鸣、哭闹声,实际上就是通信系统中的噪声,噪声太大时,我们是无法通信的,因为我们根本听不清旁边的人在说些什么,只能听到轰鸣、哭闹声。最简单克服噪声的办法就是提高信号的发射功率,也就是大声地说话,让自己的声音盖过那些哭闹声,也即是通信系统中的功率控制。还有一种办法就是我们过滤掉一些噪声,虽然,这些声音都会进入我们的耳朵,但是,我们的大脑可以过滤掉一些不关注的声音,专注的去接收那些关注的声音,也即是通信系统中的频率选择。此外,大家七嘴八舌的说话也是一个问题。7,8个人同时在说话,你能听清楚一两个就不错了,其他人在说啥,根本没法听清。所以,我们说话的时候,一般会有一个轮流的机制。每个人说两句,别人说话的时候,别插嘴。或者,两个人说悄悄话,不打扰到别人,自己也听得清。这里的轮流说话机制,就是通信系统中的“时分复用”或者“频分复用”;一个人说7个人听,就是广播;1对1的悄悄话就是单播。数据链路层实际上就是用来解决以上的这些问题。 数据链路层会将待传输的消息组成一个帧,如图3-4所示:图3-4 EtherCAT帧结构 这个帧里就会包含目的地址、源地址、帧数据、帧校验位等。通过目的地址就可以确定帧传递的对象,通过源地址接收方也可以知道是谁发送了这条帧。在数据帧之外的地方,一般还会存在一个控制器(比如EtherCAT主站),这个控制器会决定,其他的从站什么时候传输数据,数据可以占用多少的资源。在其他的一些更复杂的通信系统中,数据链路层还会根据当前的信道条件(噪声情况),来决定各个设备的发射功率,调制方式等。 应用层:说完了数据链路层,我们还需要继续了解一下应用层。首先需要明确的一点,这里的应用层和我们手机、电脑上的应用程序不是一个东西。最为常见的应用层协议就是HTTP。简单来说,应用层是对数据的一种格式约定。这里还是用人类的对话来打个比方。你和一个老外,大家都有口有耳,也都是文明人,知道等对方说完自己再说。但是,你不懂英文,他不懂中文,你们还是无法交流。他说了“double”,你以为是“打包”;他说“You need cry deal”,你以为是“有你的快递”。这实际上就是你们的应用层协议不对等,他安装的是“英语”应用层协议,你安装的是“中文”应用层协议,大家说话牛头不对马嘴,根本无法交流。再夸张一点,我和你都是中国人,我们都听得懂中文,当时我是学通信的,你是学自动化的,我说PRACH信道,信道检查与估计,匹配滤波这些词的时候,你能明白每一个字的意思,但是连着一起是啥就不知道了。这就是因为你确实“通信系统”这个应用层协议。应用层协议最终的目的,就是让消息的收发双方知道这一串“1010101010”代表的是什么意思。本来这一章准备昨天就写完了,谁知道写了这么多无关的内容,后面准备新开一个博客把OSI的7层就讲一下,然后再把这一节删除掉。4.学习书目 其实,前面说了这么多,我觉得只有这一节最重要,介绍一下我的参考书目。网上虽然有各种各样的博客、知乎文字,但是始终是比不上书本上的详细和系统的。网上这些博客可能可以吃个快餐,但绝对不是什么捷径。不系统的学习,只能让你一知半解,能做个Demo出来就不错了。一旦遇到一点bug,根本无从下手。所以,一定要多读书,读好书。 这里有几本书要给大家推荐一下。 首先是北京航空航天大学出版社,郇极、刘艳强编写的《工业以太网现场总线EtherCAT驱动程序设计及应用》。这本书详细的介绍了EtherCAT协议、从站控制芯片以及相关应用层协议。我这里的大多数内容都取自于这本书中,如果能把这本书都看懂、看明白,那EtherCAT从站开发,应该不会有太大的难点。 第二是周立功的《CANopen轻松入门》。EtherCAT是一个数据链路层的协议,所以还需要配合上层的应用层协议才能更好的工作,CANopen即是工业物联网中一个比较常用的应用层协议。事实上,进行从站开发的时候,应用层协议会占到很大的比例。因为,EtherCAT从站一般都会使用一个专用ASIC(如ET1100)来实现EtherCAT协议栈,也即是完成数据链路层的工作。对于数据链路层,我们只需要做一些配置工作,而应用层协议则需要通过软件来实现。 第三是倍福官方的《EtherCAT Slave Information Specification 》和《Application Note ET9300》。前面说了,EtherCAT协议栈的功能都是在ET1100上实现的,开发从站是不涉及这部分数据链路层的代码的。但是,我们还是对从站进行相应的配置,包括PDI控制,SYNC信号脉冲宽度等信息(称为EtherCAT Slave Information,ESI)。这些信息的配置就在《EtherCAT Slave Information Specification》里有详细讲解。此外,从站开发还需要实现CANopen等应用层协议。对于应用层协议的实现,在《Application Note ET9300》里有比较详细的讲解。像ET1100、AX58100、LAN9252这些EtherCAT控制芯片,其芯片厂商都会提供一些Demo程序,这些Demo程序实际上都是基于《Application Note ET9300》里的软件框架来完成的。《Application Note ET9300》只有英文版,我自己也还没有看完,而且比较重要,后面专门拿一章来细讲。 第四是SSC,这是倍福提供的一个软件。前面说了,从站开发的两个关键步骤是EtherCAT控制芯片的配置和应用层协议的实现。倍福提供了SSC这样一个软件,它可以直接根据配置和需求,生成所需的xml描述文件和应用层代码。当然,这个软件生成的代码原生只适配与倍福自己的ET1100或ET1200芯片,其他的LAN9252、AX58100都做一些修改。这个东西看着很美好,也就那么回事。其实,每个芯片厂商都有提供自己的Demo程序,这些Demo程序都简单实现了应用层协议。如果是使用非倍福的芯片,不如直接在芯片厂商的Demo程序上改,这样可以避免一些莫名其妙的bug。不过,如果所需的应用层协议,芯片厂商没有提供Demo程序的话,还是需要用SSC生成一个参考,然后,再基于这个参考来修改。题外话原本以为一个晚上可以搞定的工作,生生花了2个晚上。很多地方写得比较零碎,特别是OSI那一段扯得有点远了,写了不少和主题无关的内容,后面找时间再重新精简一下。第一次写博客,可能有不少不准确或者错误的地方,还请大家见谅。如有不对之处,还请多多指教。编辑于 2020-03-13 16:39工业互联网/物联网平台个人博客以太网(Ethernet)赞同 19716 条评论分享喜欢收藏申请转载文章被以下专栏收录EtherCAT学习之路EtherCAT从站开
EtherCAT从站开发入门-CSDN博客
>EtherCAT从站开发入门-CSDN博客
EtherCAT从站开发入门
最新推荐文章于 2024-01-05 16:53:58 发布
ethercat_i7
最新推荐文章于 2024-01-05 16:53:58 发布
阅读量2.5w
收藏
113
点赞数
8
分类专栏:
EtherCAT
文章标签:
EtherCAT
xmc4800
从站开发
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/ethercat_i7/article/details/80430709
版权
EtherCAT
专栏收录该内容
16 篇文章
83 订阅
订阅专栏
EtherCAT从站开发中,除了常见的ESC(FPGA IP)+DSP方案外,TI、瑞萨、英飞凌等芯片厂家也纷纷推出了集成ESC功能的芯片,本文介绍英飞凌XMC4800芯片的入门使用,并在后续文章中,基于英飞凌提供的从站例程,介绍EtherCAT基本原理和具体的代码实现过程。
一、软硬件环境
(1) XMC4800 Relax EtherCAT Kit开发板 (2)编程软件DAVE4.3.2 (3)测试主站Twincat v3.1
二、 获取例程
从英飞凌官网下载开发板的例程: http://www.infineonic.org/document/detail/index/id-216122 解压后如下图所示: 其中SSC目录下已经包含SSC5.1相关的源码。
三、导入工程
打开DAVE,File->Import导入之前下载的工程:
四、编译并下载
右键点击XMC4800_ECAT_Relax_EEP工程并选择Build Project,编译完后如下: 点击工具栏上的Run或Debug按钮将工程下载到开发板。
五、使用Twincat3进行测试
将例程中的从站设备描述文件XMC4800_Relax.xml拷贝到Twincat3对应目录: C:\TwinCAT\3.1\Config\Io\EtherCAT
打开Twincat3并新建工程,扫描设备:
扫描到从站后,就可以控制LED灯的亮灭,并检测到开发板上的按钮状态。
点亮LED1和LED3:
检测按钮状态:
六、一致性测试
使用ETG官方提供的一致性测试软件CTT对从站进行测试,结果如下: 可见,从站可通过一致性测试。
优惠劵
ethercat_i7
关注
关注
8
点赞
踩
113
收藏
觉得还不错?
一键收藏
知道了
17
评论
EtherCAT从站开发入门
EtherCAT从站开发中,除了常见的ESC(FPGA IP)+DSP方案外,TI、瑞萨、英飞凌等芯片厂家也纷纷推出了集成ESC功能的芯片,本文介绍英飞凌xmc4800芯片的入门使用过程,并在后续文章中,基于英飞凌提供的从站例程,介绍EtherCAT基本原理和具体的代码实现过程。一、软硬件环境...
复制链接
扫一扫
专栏目录
EtherCAT从站快速开发
02-14
简化XML生成,简化编程,快速入门
提供 XML快速生成器
简化编程Keil程序示例:
2个函数即可完成ESC的初始化及调用
EtherCAT从站控制芯片TMC8462、8461、8460
02-26
EtherCAT salve从站控制芯片 TMC8462、8461、8460EtherCAT的研发目标是将以太网应用于需要短暂数据更新时间(也称周期时间,≤100 µs)的自动化应用,且通信抖动小(为了实现精确同步,≤1 µs)、硬件成本更低。
17 条评论
您还未登录,请先
登录
后发表或查看评论
EtherCAT从站开发
caixf的博客
01-02
490
开发一个EtherCAT从站,并将从站连接到EtherCAT主站
贝福 EtherCAT 开发板 应用手册
11-28
贝福 EtherCAT 开发板 EL9800 应用手册,解释说明了 EL9800如何使用的步骤
EtherCat 从站控制芯片
最新发布
weixin_46024116的博客
01-05
973
EtherCat 从站控制芯片简称ESC,是实现EtherCat数据链路层协议的专用芯片,用作处理EtherCat数据帧,并为从站控制装置提供数据接口,简单说就是一般我们的MCU不支持EtherCat(当然也有支持的,支持的就不需要ESC),ESC就是个转换器,一般和MCU选择串行(SPI)的方式来通信。ESC存储空间:前面讲到ESC具有64K字节的DPRAM,前4K(0x0000–0x0FFF)字节的寄存器空间。
Ethercat学习-从站源码生成
西澳峰的博客
03-29
4787
移植平台GD32F450,从站芯片AX58100,EtherCAT Slave Stack Code Tool (SSC) V5.12 注意:如果安装了SSC5.11,还可以正常安装SSC5.12,如果安装了SSC5.12的话,想再装SSC5.11,需要先将5.12卸载干净,暂时还没找到卸载SSC的方式。
【EtherCAT】一、入门基础
06-09
5266
EtherCAT(Ethernet Control Automation Technology)是一种高性能实时以太网通信协议,用于在工业自动化领域中进行实时控制和通信。它是由德国Beckhoff自动化公司在2003年开发的,并被国际电工委员会(IEC)标准化为IEC 61158标准。EtherCAT的设计目标是实现极低的通信延迟和高带宽的数据传输,以满足高速控制和数据采集的需求。它通过一种特殊的主从架构实现,其中一个主站(Master)负责协调整个网络,而从站(Slave)则负责提供输入输出功能。
EtherCAT运动控制卡开发教程之Qt(中):小线段连续轨迹加工、暂停与继续
weixin_57350300的博客
05-13
687
正运动技术专注于运动控制技术研究和通用运动控制软硬件产品的研发,是国家级高新技术企业。正运动技术汇集了来自华为、中兴等公司的优秀人才,在坚持自主创新的同时,积极联合各大高校协同运动控制基础技术的研究,是国内工控领域发展最快的企业之一,也是国内少有、完整掌握运动控制核心技术和实时工控软件平台技术的企业。主要业务有:运动控制卡_运动控制器_EtherCAT运动控制卡_EtherCAT控制器_运动控制系统_视觉控制器__运动控制PLC_运动控制_机器人控制器_视觉定位等等。
【Ethercat机器人控制系统开发】倍福Twincat入门教程
ljcyyx的博客
11-05
6287
低成本上手Twincat教程,适合初学者。
EtherCAT运动控制卡开发教程之Qt(上):开发环境配置与简单运动控制应用
weixin_57350300的博客
05-05
3985
正运动技术专注于运动控制技术研究和通用运动控制软硬件产品的研发,是国家级高新技术企业。正运动技术汇集了来自华为、中兴等公司的优秀人才,在坚持自主创新的同时,积极联合各大高校协同运动控制基础技术的研究,是国内工控领域发展最快的企业之一,也是国内少有、完整掌握运动控制核心技术和实时工控软件平台技术的企业。主要业务有:运动控制卡_运动控制器_EtherCAT运动控制卡_EtherCAT控制器_运动控制系统_视觉控制器__运动控制PLC_运动控制_机器人控制器_视觉定位等等。
使用EtherCAT进行开发的例子
aiot_bigbear的专栏,关注我获取最新技术文章信息与海量资源~
06-06
381
通过使用EtherCAT主控制器和EtherCAT从控制器,可以实现对这些设备的精确控制。通过使用EtherCAT主控制器和EtherCAT从控制器,可以实现对这些设备的高精度控制和同步。控制运动控制器 EtherCAT可以用于控制运动控制器,例如伺服驱动器和步进驱动器。通过使用EtherCAT主控制器和EtherCAT从控制器,可以实现对这些控制器的高精度控制。通过使用EtherCAT主控制器和EtherCAT从控制器,可以实现对这些设备的高速控制和同步。
EtherCAT的实现和应用 - 从站驱动和应用
weiDev的博客
03-22
3522
EtherCAT的实现和应用 - 从站驱动和应用
EtherCAT从站开发设计指南,总线远程IO篇
2301_79171935的博客
08-15
1081
EtherCAT是全球响应能力最高的工业以太网技术,广泛应用于工业自动化,本文从工程实践出发讲解设计EtherCAT从站
英飞凌可视化软件DAvE使用中文指南.pdf
07-10
DAvE是英飞凌公司为了方便用户开发的免费得的可视化工具,本文是其中文使用指南!帮助你减少问题
快速开发ETHERCAT从站(使用ArduCAT)
05-25
ArduCAT是Arduino Compatible 开发板。通过Arduino技术,大大简化EtherCAT从站的开发。ArduCAT开发板包含两路可用于EtherCAT实时以太网的100BASE-TX网口,所以它特别适合基于PC的自动化方案。ArduCAT使用ATMega1280 处理器,兼容Arduino Mega开发板,并具有完全相同的引脚定义。板上采用开关稳压器提供5V 或3.3V的2A直流输出,且发热甚微。除配套的开源Arduino库外,还配有从站应用层代码自动生成工具,用户只需编辑EXCEL表格便生成完整的协议栈,大大简化了通信协议的代码的开发,使用户能够将注意力集中在开发具体的应用上。
EtherCAT从站开发板资料
10-28
EtherCAT从站开发板资料,infineon的ASIC XMC4800主芯片
ECharts使用步骤(五部曲)
qq_43494149的博客
07-08
2491
简介:
一个适应javascript实现的开源可视化库(js插件)。可以流畅的运行在PC端和移动端上,兼容当前大部分浏览器(ie8及以上),底层依赖矢量图形库ZRender,提供直观、交互丰富、可高度自定义化的数据可视化图表。
使用步骤(五部曲):
1、下载并引入echarts.js文件
2、准备一个具备大小(确定宽高)div容器用来装图表
3、初始化echarts实例对象 : echarts.init(dom容器)
4、指定配置项和数据(option)
5、将配置项设置给echarts实例对象
详解EtherCAT主站SOEM源码_eepromtool.c
zzz79的博客
05-03
3166
EhterCAT_SOEM
文章目录EhterCAT_SOEM前言一、eepromtool.c的作用二、读写EEPROM步骤1.读取EEPROM数据2.写入EEPROM数据2.1 写入从站别名2.2 读取0-6字数据2.3 计算校验和2.4 写入校验和总结
前言
SOEM简单开放式ETherCAT主站,支持Linux,Windows双系统,这里讲解是SOEM 1.3.1版本基于Windows平台编译后的源码eepromtool.c,在SOEM-1.3.1\test\win32\eepromtool文件夹中
ethercat从站开发流程
05-14
3. EtherCAT从站实时栈:使用EtherCAT从站实时栈开发包,搭建起整个EtherCAT从站框架。 4. EtherCAT从站配置:使用EtherCAT Master工具对从站进行配置,将其添加到EtherCAT网络中,并完成地址分配等设置。 5. ...
“相关推荐”对你有帮助么?
非常没帮助
没帮助
一般
有帮助
非常有帮助
提交
ethercat_i7
CSDN认证博客专家
CSDN认证企业博客
码龄7年
暂无认证
38
原创
8万+
周排名
190万+
总排名
35万+
访问
等级
3445
积分
659
粉丝
229
获赞
217
评论
1380
收藏
私信
关注
热门文章
EtherCAT主站SOEM在Ubuntu上的移植
25614
EtherCAT从站开发入门
25184
EtherCAT ET1100从站信息接口介绍
23340
CANopen原理--心跳
19899
CANopen原理--SDO(upload)
16840
分类专栏
freeRTOS
1篇
sqlite3
1篇
EtherCAT
16篇
Etherlab
7篇
电机控制
2篇
CANopen
5篇
linux
5篇
最新评论
EtherCAT主站SOEM在Ubuntu上的移植
m0_53295178:
您会控制了吗?能发一下样例代码吗?1323992328@qq.com
伺服驱动器-速度环设计
m0_52379570:
您好,中频宽度的定义具体出自哪里呢,有些资料定义中频宽度为h=lg(Tw/Tl)
CANopen原理--心跳
Way-Jay:
可以针对从站自己写一个掉线的判断
CANopen原理--SDO(download)
m0_56338463:
你好,楼主 可以分享一下您的工程文件吗如果可以 真的谢谢啦 2278517559@qq.com
EtherCAT主站SOEM源码解析----EEPROM访问
ljymoonlight:
请教一下: xml中有modules 和 slots 怎么 在EEPROM中存储?
从站用怎么对应PDO解析?
您愿意向朋友推荐“博客详情页”吗?
强烈不推荐
不推荐
一般般
推荐
强烈推荐
提交
最新文章
freeRTOS在28388 CM核上的移植
sqlite3源码理解-sqlite3_open
linux设置进程CPU亲和力函数sched_setaffinity()简介
2023年1篇
2020年3篇
2019年1篇
2018年14篇
2017年9篇
2016年10篇
目录
目录
分类专栏
freeRTOS
1篇
sqlite3
1篇
EtherCAT
16篇
Etherlab
7篇
电机控制
2篇
CANopen
5篇
linux
5篇
目录
评论 17
被折叠的 条评论
为什么被折叠?
到【灌水乐园】发言
查看更多评论
添加红包
祝福语
请填写红包祝福语或标题
红包数量
个
红包个数最小为10个
红包总金额
元
红包金额最低5元
余额支付
当前余额3.43元
前往充值 >
需支付:10.00元
取消
确定
下一步
知道了
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝
规则
hope_wisdom 发出的红包
实付元
使用余额支付
点击重新获取
扫码支付
钱包余额
0
抵扣说明:
1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。 2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。
余额充值
EtherCAT的实现和应用 - 从站驱动和应用 - 知乎
EtherCAT的实现和应用 - 从站驱动和应用 - 知乎首发于EtherCAT切换模式写文章登录/注册EtherCAT的实现和应用 - 从站驱动和应用酱哒珠海极海半导体有限公司 嵌入式工程师01 EtherCAT从站设计EtherCAT从站设计包括Hardware、Core、API和APL等设计内容,其中APL应用逻辑里的主站应用属于上位机开发,可以不包含在从站设计里,但大家可以适当了解下上位机的开发,可以帮助我们调试下位机。从站设计总体内容从站设计架构以IO从站为例,Hardware、Core、API和APL如下面这个结构图所示。Hardware和Core已经在之前的文章讲解过了,MCU端的API和APL大家也都很熟悉,这里不再赘述相关知识。下面主要学习MCU和ESC怎么适配从站协议栈代码和应用。02 从站驱动设计驱动设计流程EtherCAT从站驱动的设计主要包括MCU端固件代码和XML文件的编写。XML文件和固件代码是有关联对照关系的,下面会具体讲到。CoE功能框架如下图所示,要实现一个CoE从站,那么代码中要包含下图所示的MailBox、Process Data、Emergency等。上述这些在栈代码中都以及基本实现和配置好,CoE从站的功能扩展和修改主要涉及Object Dictionary、PDO和CAN Application部分。SSC协议栈代码执行流程SSC协议栈实现了CoE架构里的所有功能,下图可以看到有MailBox、Process Data、Emergency等的实现,Object Dictionary对象字典的初始化和PDO过程数据通信的实现。PDO过程数据通信PDO过程数据通信的实现,同时有中断和查询两种方式。查询方式中断方式CoE对象字典MDP(Modular Device Profile)定义和建模了设备内部结构,以对象字典的方式定义了条目的相应行为、关系。目的是为主设备和配置工具通信提供一种简单的方法。对象字典中每个对象都描述了它的功能、名字、索引、子索引、数据类型以及读写属性等。EtherCAT中数据交互主要用到TxPDO和RxPDO两类对象字典。 这里的input和output都是相对于主站来说的,input就是输入主站,output就是主站输出。下面举例说明下CoE对象。如下图所示0x1C13是input的TxPdo分配对象,用于通道分配。0x1A00是0x6000的映射对象,用于索引。而0x6000是应用对象,存储应用数据。SSC中以0x1601对象作为数字输出映射对象,0x1A00作为数字输入映射对象。另外还有CiA402子协议对象字典,详细可以看《ETG.6010》手册。XML文件和固件程序的对应关系每个对象的定义都分为数据类型定义和对象定义,下面是0x1601映射对象的数据类型定义。0x1601映射对象的数据类型定义0x1601映射对象属性定义0x7010应用对象的数据类型定义0x7010应用对象的属性定义0x7010应用对象的entry入门定义0x1C12分配对象的数据类型定义0x1C12分配对象的属性定义03 从站应用从站应用设计在完成对象字典的定义后,要进行对象的初始化提供对象字典对应数据量的MCU端接口给SSC根据字典的输入输出属性分别初始化Input Mapping、Output Mapping及关联应用对象ESC寄存器配置区在EEPROM最开始的部分存储的是ESC寄存器初始值,ESC上电后会从EEPROM中读取这些信息并配置相应的寄存器。这部分的大小为8个字。可以在《et1100_configuration_and_pinout_v4.4》excel文件中配置和查看信息。编辑于 2022-03-27 00:21通用串行总线Ethernet驱动程序赞同 73 条评论分享喜欢收藏申请转载文章被以下专栏收录EtherCATEtherCAT的实现
EtherCAT应用开发实战指南 — EtherCAT应用开发实战指南 v1.0 documentation
EtherCAT应用开发实战指南 — EtherCAT应用开发实战指南 v1.0 documentation
EtherCAT应用开发实战指南
latest
第1章 变量与基本类型
第2章 语句
第3章 函数
第4章 运算符
第5章类
第6章 标准库类型
第7章 模板
第8章 关键字概念
第9章 算法
第10章 语法特性
第11章 C++11新标准
README
EtherCAT应用开发实战指南
»
EtherCAT应用开发实战指南
Edit on GitHub
EtherCAT应用开发实战指南¶
第1章 变量与基本类型
1.1 变量声明与定义-初始化
1.2 数据类型
1.3 C风格字符串
1.4 数组
1.5 枚举类型
1.6 类型转换
1.7 初始化
[选读] 搭建开发环境
第2章 语句
2.1 if语句
2.2 for语句
2.3 break语句
2.4 continue语句
2.5 while语句
2.6 switch语句
2.7 goto语句
2.8 try语句块和异常处理
第3章 函数
3.1 参数传递
3.2 函数返回类型
3.3 默认实参
3.4 内联函数
3.5 函数重载
3.6 函数指针
第4章 运算符
4.1 常用运算符
4.2 运算符优先级
4.3 重载运算符
第5章类
5.1 类的成员
5.2 类的静态成员
5.3 类的访问控制
5.4 类的构造函数
5.5 类的拷贝控制操作
5.6 类的继承与多态
5.7 类的多重继承与虚继承
5.8 类的类型转换
5.9 类成员指针
5.10 union
5.11 嵌套类
5.12 局部类
第6章 标准库类型
6.1 标准库类型:string
6.2 标准库类型:vector
6.3 标准库类型:IO库
6.4 标准库类型:迭代器
6.5 标准库类型:顺序容器
6.6 标准库类型:容器适配器
6.7 标准库:关联容器
6.8 标准库类型:tuple
6.9 标准库类型:bitset
第7章 模板
7.1 函数模板
7.2 类模板
7.3 模板参数
7.4 成员函数模板
7.5 可变参数模板
7.6 模板特性
第8章 关键字概念
8.1 关键字:auto
8.2 关键字:const
8.3 关键字:using
8.4 关键字:typedef
8.5 关键字:static
8.6 关键字:extern
8.7 关键字:explicit
8.8 关键字:mutable
8.9 关键字:inline
第9章 算法
9.1 泛型算法
9.2 算法概览
第10章 语法特性
10.1 头文件
10.2 在main函数之前或者之后打印消息
10.3 左值与右值
10.4 命名空间
10.5 命名规范
10.6 变量生存期和变量作用域
10.7 标准类型转换模板
10.8 手动管理内存
10.9 并行和并发
10.10 固有的不可移植的特性
10.11 运行时类型识别
10.12 异常处理
10.13 内存分布
10.14 调试帮助
10.15 编译链接原理
第11章 C++11新标准
C++11关键字
11.1 标准库bind函数
11.2 Lambda表达式
11.3 智能指针
11.4 右值引用
11.5 初始化列表
11.6 标准库function类型
README¶
README
联系方式
参考书籍
编写原则
TODO
Next
© Copyright 2022, rombo307/www.mzc-tc.com.
Revision 88cd5591.
Last updated on True.
Built with Sphinx using a
theme
provided by Read the Docs.
Read the Docs
v: latest
Versions
latest
Downloads
html
epub
On Read the Docs
Project Home
Builds
EtherCAT (学习笔记)-CSDN博客
>EtherCAT (学习笔记)-CSDN博客
EtherCAT (学习笔记)
最新推荐文章于 2024-01-16 16:03:36 发布
pwl999
最新推荐文章于 2024-01-16 16:03:36 发布
阅读量6.7w
收藏
1.3k
点赞数
209
分类专栏:
Motion Control
文章标签:
ethercat
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/pwl999/article/details/109397700
版权
Motion Control
专栏收录该内容
3 篇文章
75 订阅
订阅专栏
文章目录
1. 简介1.1 运动控制1.2 实时以太网1.3 EtherCAT
2. EtherCAT原理介绍2.1 实时性2.2 端口管理2.3 EtherCAT网络拓扑2.4 EtherCAT网络协议栈2.5 EtherCAT数据帧格式2.6 EtherCAT设备寻址方式2.7 分布式时钟(Distribute Clock)2.8 应用层(Application Layer)2.9 设备配置(Device Profile)2.10 主站设计2.11 从站设计
3. 应用层(Application Layer)3.13.2 EtherCAT Slave Implementation (从站实现)
4. 应用实例4.1 主站操作系统(RTAI)4.2 主站EtherCAT程序(IGH)4.3 主站应用开发(LinuxCNC)4.4 ET12004.5 从站程序设计4.6 实验测试
5. 工具5.1 TwinCAT5.2 LinuxCNC5.3 开源的EtherCAT Master
参考资料
1. 简介
1.1 运动控制
运动控制系统处理机械系统中一个或多个坐标上的运动以及运动之间的协调,实现精确的位置控制、速度和加速度控制、转矩和力的控制等。
单轴的运动控制系统可分为开环、半闭环和闭环伺服系统。
多轴运动控制系统可以分成点位控制、连续轨迹控制和同步控制。
典型的运动控制系统,从结构上看,包括上位机控制窗口、运动控制器、驱动器、电机以及测量反馈系统等几个部分组成:
1.2 实时以太网
实时以太网(RTE, Real Time Ethernet)是常规以太网技术的延伸,以便满足工业控制领域的实时性数据通信要求。目前,国际上有多种实时工业以太网协议,根据不同的实时性和成本的要求使用不同的原理,大致可以分为以下三类:
(1)基于TCP/IP实现的工业以太网仍使用TCP/IP协议栈,通过上层合理的控制来解决通信过程中的不确定因素。这种方式具有较高的传输速率,适应于大量数据通信,更适合作为网关和交换设备的应用,不能实现很好的实时性。常用的通信控制方法有:合理调度,减少冲突的概率;定义帧数据的优先级,为实时数据分配最高优先级;使用交换式以太网等。使用这种方式的典型协议有Modbus/TCP和Ethernet/IP等。(2)基于以太网实现的工业以太网仍然使用标准的、未修改的以太网通信硬件,但是不适用TCP/IP来传输数据。它使用特定的报文进行传输。TCP/IP协议栈能使用时间控制层分发一定的时间片来利用网络资源。该类协议主要有Ethernet Powerlink, EPA C Ethernet for Plant Automation ), PROFINET IRT等。通过这种方式可以实现较好的实时性。(3)通过修改以太网协议实现的工业以太网,实现应答时间小于lms的硬实时,从站使用特定的硬件实现。由实时MAC控制实时通道内的通信,从根本上避免报文间的冲突。非实时数据依然能在通道中按原协议通信。典型协议有德国倍福的EtherCAT、西门子的PROFINET IRT等。
1.3 EtherCAT
德国BECKHOFF自动化公司于2003年开发出的EtherCAT实时以太网技术突破了其他以太网解决方案的系统限制:通过该项技术,无需接受以太网数据包,将之解码,然后再将过程数据复制到各个设备。
2. EtherCAT原理介绍
EtherCAT从站设备在报文经过其节点时读取相应的数据报文,同样输入数据也是在报文经过时插入到报文中。整个过程报文只有几纳秒的时间延迟,实时性获得极大提高
EtherCAT作为一种工业以太网总线,充分利用了以太网的全双工特性。使用主从通信模式,主站发送报文给从站,从站从中读取数据或将数据插入至从站。
主站可使用标准网卡实现,从站选用特定的EtherCAT从站控制器ESC(EtherCAT Slave Controller)或者FPGA实现,
主要完成通信和控制应用两部分功能,EtherCAT物理层选用标准以太网物理层器件。
从站能将收到的报文直接处理,并读取或插入有关的数据,再将报文发送给下一个EtherCAT从站。最末尾的EtherCAT从站返回处理完全的报文,然后由第一个从站发送给主站。整个通信过程充运行于全双工模式下,TX线发出的报文又通过RX线返回给主站:
2.1 实时性
数据包刷新时间的计算
数据包中所有从站的 Process Datarocess Datarocess Data rocess Data rocess Data rocess Datarocess Data数据 决定了数据包的长度。
一个Ethernet thernet数据包最小84 字节,不足 84 字节会补齐84 字节。由于EtherCAT Frame中有一些公共开销, 84 字节的数据包最多含18字节的过程数据。考虑到数据包必须经过每个从站两次才能回到主站,所数据包以固定的波特率100 Mbps在网络上传输两次的时间 这就是它的总线刷新时间 。
1.基于这个原则,以包含 1000路开关量信号的数据包为例,计算过程如下:
过程数据长度:1000/8=125Bytes
数据包长度:84-18+125=191Bytes=191*8 Bit= 1528 Bit
总线刷新时间:(1528Bit/100,000,000 Bps)*2=15.28us * 2 = 30.56us
注意,通常的数字量模块, 都是单纯的输出或者输入模块,而不是混合模块。所以 1000 个数字 量信号, Frame 中就会分配 125 字节。
2.再以包含100个EtherCAT伺服驱动器过程数据的EtherCAT数据包为例,假如每个伺服的过程数据只包括控制字(2字节)、状态字(2字节)、目标位置(4字节)、实际位置(4字节),其总线刷新时间的计算过程如下:
过程数据长度:100*(2+4)=600 Byte。
数据包长度:84-18+600=1266 Byte =671*8 Bit =5328 Bit
总线刷新时间:(5328 Bit/100,000,000 Bps) *2=100.656µs
注意,Frame中只为一个伺服分配了6个字节,这是因为根据Beckhoff公司的控制软件TwinCAT中关于EtherCAT的默认设置是从站的Input和Output使用同一数据段,所以数据包进入伺服驱动器时该数据段存放的是控制字和目标位置,而出来时则存放伺服的状态字和实际位置。
以上两个数据30.56µs和101.28 µs就是EtherCAT官方宣传资料中,刷新1000个数字量需要30µs,刷新100个伺服轴只需要100µs的数据由来。实际上,根据从站的类型、是否包含分布时钟、是否启用时钟同步、时钟同步的参数设置不同,在数据包中有可能还会增加8-12字节用于传输同步时钟值,以及相应的为每个从站增加一个Bit的标记等等,会增加几个微秒的刷新时间,暂且忽略不计。
以上计算只是数据包传输需要的理论时间,实际上,数据包经过每个从站会产生短暂的硬件延时。100M超五类网线接口的从站延时约1µs,而EBus的IO模块类从站延时约0.3µs,在毫秒级以下的控制任务中如果从站数量较多,这个时间也相当可观,计算刷新周期时应该考虑进去。
2.2 端口管理
一个从站控制器最多可以有4个端口,如果一个端口关闭了,控制器主动连接下一个端口。端口可以随着EtherCAT命令主动的打开或者关闭。逻辑端口设置决定了EtherCAT帧的处理和发送顺序。
2.3 EtherCAT网络拓扑
所有数据帧在网络中以一种“逻辑闭环”的方式传播,与网络的硬件拓朴无关,无论它是链式、菊花链、星形还是树形拓朴。
所有数据帧都由Master发出,以事前严格定义的顺序,依次经过网络上的所有从站,走过一个完整的闭环后回到Master 。 所有数据帧通过从站中的 EtherCAT Processing Unit (EtherCAT处理单元)只有 1 次。
线型拓扑:
任意数目的设备成线型连接 最多65535个设备
数据处理链型拓扑 带有分支线的数据处理链型拓扑 树型拓扑: 实时星型拓扑: 冗余线缆
选择冗余电缆可以满足快速增长的系统可靠性需求,以保证设备更换时不会导致网络瘫痪。您可以很经济地增加冗余特性,仅需在主站设备端增加使用一个标准的以太网端口(无需专用网卡或接口),并将单一的电缆从总线型拓扑结构转变为环型拓扑结构即可(见图7)。当设备或电缆发生故障时,也仅需一个周期即可完成切换。因此,即使是针对运动控制要求的应用,电缆出现故障时也不会有任何问题。
EtherCAT也支持热备份的主站冗余。由于在环路中断时EtherCAT从站控制器芯片将立刻自动返回数据帧,一个设备的失败不会导致整个网络的瘫痪。例如,拖链设备可以配置为分支拓扑以防线缆断开。
2.4 EtherCAT网络协议栈
CoE(Can over EtherCAT)
PDO(Process Data Object 过程数据对象)
SDO(Service Data Object 服务数据对象)
PDI(Process Data Interface 过程数据接口)(uC, SSI, I/O)
ESM(EtherCAT State Machine)
ESI(EtherCAT Slave Information) (XML device description)
ENI(EtherCAT Network Information)
CTT(Conformance Test Tool 一致性测试工具)
SM(SyncManagers 同步管理器)
MDP(modular device description 模块化设备描述 )
2.5 EtherCAT数据帧格式
EtherCAT数据直接嵌入在以太网数据帧中进行传输,只是采用了一种特殊的帧类型,该类型为Ox88A4, EtherCAT数据帧结构如图所示:
EtherCAT数据包由数据头和数据实体两部分组成,EtherCAT数据头包含2个字节,每个数据包里面可以只包含一个EtherCAT子报文,也可以包含多个子报文;一个EtherCAT子报文对应着一个从站,因此一个EtherCAT数据包可以操作 多个EtherCAT从站,相应的数据长度在44-1498字节之间,EtherCAT数据帧结构定义: 类型 字段:
EtherCAT子报文结构定义:
地址区 字段
EtherCAT 寻址:
EtherCAT 通信的实现是通过由主站发送至从站的 EtherCAT 数据帧来完成对从站设备内部存储区的读写操作, EtherCAT 报文对 ESC 内部存储区有多种寻址操作方式,从而可以实现多种通信服务。EtherCAT 段内寻址有设备寻址和逻辑寻址两种方式。
设备寻址是面对一个从站进行读写操作。
逻辑寻址是面向过程的数据操作, 实现同一报文读写多个从站设备的多播功能。
具备全部寻址方式的从站称为完整性从站,只具备部分寻址方式的从站则称为基本从站。
命令 字段
不同命令通过信息传输系统最优化对所有存取方法的读写
WKC 字段
Working Counter。如果成功寻址了EtherCAT设备,并且成功执行了读操作,写操作或读/写操作,则工作计数器将递增。 可以为每个数据报分配一个工作计数器值,该值是根据预期报文通过所有设备数来设置的。 通过将工作计数器的预期值与所有设备通过后的实际值进行比较,主站可以检查EtherCAT数据报是否已成功处理。
同步管理器
2.6 EtherCAT设备寻址方式
在EtherCAT的每个子报文中,有32位空间用于对EtherCAT设备进行寻址。寻址方式有四种,分别为:
位置寻址
位置寻址方式是根据从站的连接顺序,即物理位置实现的。在报文头的32bit地址中,前16bit的Position用于存放地址值,Offset用于存放ESC逻辑寄存器或者内存地址。报文每经过一个从站设备,其Position中的地址值加1。当一个从站接收到EtherCAT报文后,如果报文中的地址值为0,则该报文就是这个从站要要接收的报文。
在上图中,如果需要总线上第8个设备响应报文,则主站需要将报文的地址设为0xFFF9,当报文经过第1个从站时,地址为0xFFF9,不等于0,第1个从站不会响应报文,报文地址加1,变为0xFFFA。当报文经过第2个从站时,地址为0XFFFA,不等于0,第2个从站不会响应该报文,报文地址加1,变为0xFFFB。以此类推,当报文到达第8个从站时,此时地址值为0x0000,当前从站将接收报文。
位置寻址(Position Address / Auto Increment Address)只应在启动EtherCAT系统时用于扫描现场总线,以后只能偶尔使用以检测新连接的从站。 如果由热连接或链接问题导致循环暂时关闭,使用位置寻址可能会出现问题。 在这种情况下位置地址被移位,并且,如错误寄存器的值到设备的映射变得不可能,因此不能定位故障链路。
节点寻址
在启动阶段,主站通常采用位置寻址方式对总线上的从站进行寻址,之后采用节点寻址方式。
在报文中,报文头的32bit地址,前16bit的Address用于存放站点地址值,Offset用于存放ESC逻辑寄存器或者内存地址。
在每个从站中站点地址保存在寄存器(0x0010) 中。
顺序寻址时,主站可以对每个从站的站点地址进行设置,也可以直接读取每个从站的的站点地址。
节点寻址方式的优点是,每个从站的地址与其在总线中的位置无关。在添加/删除从站,甚至是改变总线拓扑结构的时候都能对从站进行正确的访问。
上图是节点寻址方式的示意图。8个从站的地址与其在总线中的位置并没有关系。出于直观的目的,4台伺服驱动器的地址被设置为连续的,4个I/O模块的地址被设置为连续的,在实际中并没有这样的要求。
EtherCAT从设备可以有两个配置的站点地址,一个由主站分配(Configured Station Address),另一个存储在SII EEPROM,并且可以由从站应用程序更改(Configured Station Alias address)。
配置站点地址由主站在启动期间分配,并且不能由EtherCAT从站更改。 配置站别名地址存储在SIIEEPROM中,可由EtherCAT从站更改。 配置的站别名必须由主站启用。 如果节点地址(NodeAddress)与配置的站地址或配置的站点别名匹配,将执行相应的命令操作。
逻辑寻址
EtherCAT的第三种寻址方式是逻辑寻址,首先需要了解的是FMMU。
FMMU(Fieldbus Memory Management Units)
FMMU称为总线内存管理单元,它存在与从站芯片ESC中,负责对从站物理地址与主站逻辑地址进行翻译并建立映射关系。主站在总线启动过程中对FMMU进行配置,内容包括:
• 逻辑地址的起始地址
• 数据长度(按跨字节数计算)
• 逻辑地址的起始位
• 逻辑地址的终止位
• 从站物理地址的起始地址
• 从站物理地址的起始位
• 操作类型(只读、只写、读写)
• 使能
在报文中,使用报文头的32bit地址的全部,用来表示大小为4GB的逻辑地址空间。 以上图为例,FMMU将逻辑地址中0x00012345第2位开始的,到0x00012346以第2位终止的区域,与从站物理地址中0x0010第0位开始的区域进行映射。
当从站收到来自主站的报文时,会检查报文中的地址是否与FMMU中的地址相符,如果有,将根据操作类型进行读写操作。
这种寻址方式的优点是,在主站想对每个从站进行访问的时候,只需要对逻辑空间中的地址进行操作,而无须关心该地址对应的从站物理地址,减轻了主站的负担。
所有器件读取和写入相同的逻辑4 GB地址空间(EtherCAT数据报中的32位地址字段)。 从器件使用映射单元(FMMU,现场总线存储器管理单元)将数据从逻辑过程数据映像映射到其本地地址空间。 在启动期间,主器件配置每个从器件的FMMU。 从站使用FMMU的配置信息知道逻辑过程数据映像的哪些部分必须映射到哪个本地地址空间。
逻辑寻址支持逐位映射。 逻辑寻址是一种强大的机制,可以减少过程数据通信的开销,因此通常用于访问过程数据。
当从站设备收到的EtherCAT报文带有逻辑寻址标志位时,从站设备将检查自身是否有相应的FMMU单位地址与之匹配。
总结:EtherCAT使用三种方式对设备进行寻址,在启动过程中,使用顺序寻址方式为从站分配节点地址,然后通过节点寻址方式配置从站寄存器,将逻辑地址与从站物理地址进行映射,之后就可以使用逻辑寻址方式进行过程数据交换了。
Broadcast寻址
每个EtherCAT从站都被寻址。
使用广播寻址。 如果从站的预期是相同的,用于所有从站的初始化和检查所有从站的状态。每个从器件具有一个16位Local地址空间:
地址范围0x0000:0x0FFF专用于EtherCAT寄存器,
地址范围0x1000:0xFFFF用作过程数据RAM
通过EtherCAT数据报的偏移字段寻址,过程数据。
2.7 分布式时钟(Distribute Clock)
通过分布式时钟精确的调整,系统可达到精确的同步。
外部时钟同步IEEE1588 EtherCAT设备同步 定义系统时间
定义一个参考时钟:
一个EtherCAT从站被当做参考时钟使用
参考时钟循环的发布它的时钟
参考时钟根据一个全局参考时钟 IEEE1588
2.8 应用层(Application Layer)
应用层AL(Application Layer) 为用户与网络之间提供接口,应用层在EtherCAT 通信协议层次结构中是与用户联系最紧密最直接的一层,它可以直接与用户进行交互,实现面对具体的应用程序和控制任务等功能, EtherCAT 应用层为各种服务协议与应用程序之间定义了接口, 使其能够满足应用层所要求的各种协议共同工作的需求。
EtherCAT 作为网络通信技术,支持CAN open 协议中的CiA402,以及 SERCOS 协议的应用层( 即 CoE 和SoE)等多种符合行规的设备和协议。
EtherCAT状态机 设备和网络的启动
邮箱接口和协议 设备的存取变量 异步传输
协议:
EOE: Ethernet over EtherCAT
COE: CANopen over EtherCAT
FOE: Filetransfer over EtherCAT
SOE: Servo Drive over EtherCAT
从站信息接口 设备特征和配置信息
EtherCAT状态机
状态机构建于数据链路层 定义EtherCAT从站设备一般信息状态 指定对EtherCAT从站设备启用网络时初始化和错误处理 状态和主从站之间通信关系相一致 从站设备的请求状态和当前状态反应于应用层和应用层注册中
定义了五种状态:
Init // 应用层没有数据交互,主站对数据传输信息注册有同路
Pre-Operational // 应用层上的邮箱通信。没有过程数据交互
Safe-Operational // 应用层上的邮箱通信。过程数据通信,但是仅仅是输入被评估,输出置于Safe状态
Operational // 输入和输出都是有效的
Bootstrap // 定义了固件更新。是可选的,但是在固件必须要更新时推荐选择
// 只能和init进行状态间转换,没有过程数据通信,通过应用层的邮箱进行通信,根据需要的情况对邮箱进行配置,只能使用FoE协议。
从站设备的请求状态和当前状态反应于应用层控制和应用层注册中:
应用层控制(0x0120) 初始化设备状态机的状态转换
应用层状态(0x0130) 设备状态机的实际状态
应用层状态代码(0x0134) 错误原因或者其他状态代码
邮箱传输
交换变量数据的标准方式 邮箱接口是可选择的,但是推荐使用 如果过程数据是可设置的,或者有其他的非周期性服务,必须邮箱通信 全双工能力 从站可以发起一个数据交互 预留两个同步管理器通道: Sync Manager 0(主站到从站),Sync Manager 1(从站到主站) 数据交互的早期阶段,邮箱方式是可利用的(State Pre-Operational) 支持多种协议的能力
邮箱通信协议的类型:
EOE: Ethernet over EtherCAT // 通过EtherCAT传输的标准以太网帧
COE: CANopen over EtherCAT // 访问CANopen对象字典和它的对象,CANopen紧急事件和事件驱动的PDO消息
FOE: Filetransfer over EtherCAT // 下载上传固件和其他的一些文件
SOE: Servo Drive over EtherCAT // 存取伺服轮廓检验(IDN)
从站信息接口
强制从站信息接口SII(Slave Information Interface)由所有能被持久保持的对象组成 信息被存储于一个EEPROM,EtherCAT从站控制器和EEPROM之间有一个SPI接口。
SII包括:
boot设置数据
设备一致性
vender id,产品序列号,修正号,serial no
和CoE对象0x1018里,相同的信息
应用程序信息数据
额外的一些数据
AL Status Code(Application Layer Status Code)
Application Layer: Describes the highest layer of the EtherCAT slave stack which includes the EtherCAT State Machine, error handling, Mailbox protocol handling, slave application.
此可选属性由应用程序控制,并报告由AL的状态控制事例检测到的最后错误或ID值。AL(应用层)状态代码给出从机进入错误状态的原因。 如果错误标志(寄存器0x0130:04)为TRUE,则应提供AL状态代码.
2.9 设备配置(Device Profile)
设备行规描述了设备的应用参数和功能特性,如设备类别相关的机器状态等。现场总线技术已经为I/O设备、驱动、阀等许多设备类别提供了可利用的设备行规。用户非常熟悉这些行规以及相关的参数和工具,因此,EtherCAT无需为这些设备类别重新开发设备行规,而是为现有的设备行规提供了简单的接口。该特性使得用户和设备制造商可以轻松完成从现有的现场总线到EtherCAT技术的转换过程。
EtherCAT实现CANopen (CoE)
CANopen©设备和应用行规广泛用于多种设备类别和应用,如I/O组件、驱动、编码器、比例阀、液压控制器,以及用于塑料或纺织行业的应用行规等。
EtherCAT可以提供与CANopen机制[7]相同的通讯机制,包括对象字典、PDO(过程数据对象)、SDO(服务数据对象),甚至于网络管理。
因此,在已经安装了CANopen的设备中,仅需稍加变动即可轻松实现EtherCAT,绝大部分的CANopen©固件都得以重复利用。并且,可以选择性地扩展对象,以便利用EtherCAT所提供的巨大带宽。
EtherCAT实施伺服驱动 设备行规IEC 61491 (SoE)
SERCOS interface™ 是全球公认的、用于高性能实时运行系统的通讯接口,尤其适用于运动控制的应用场合。
用于伺服驱动和通讯技术的SERCOS™框架属于IEC 61491标准[8] 的范畴。该伺服驱动框架可以轻松地映射到EtherCAT中,嵌入于驱动中的服务通道、全部参数存取以及功能都基于EtherCAT邮箱(参见图12)。在此,关注焦点还是EtherCAT与现有协议的兼容性(IDN的存取值、属性、名称、单位等),以及与数据长度限制相关的扩展性。过程数据,即形式为AT和MDT的SERCOS™数据,都使用EtherCAT从站控制器机制进行传送,其映射与SERCOS映射相似。并且,EtherCAT从站的设备状态也可以非常容易地映射为SERCOS™协议状态。EtherCAT从站状态机可以很容易地映射到SERCOS™协议的通信阶段。
EtherCAT为这种在CNC行业中广泛使用的设备行规提供了先进的实时以太网技术。这种设备行规的优点与EtherCAT分布时钟提供的优点相结合,保证了网络范围内精确时钟同步。可以任意传输位置命令,速度命令或扭矩命令。取决于实现方式,甚至可能继续使用相同的设备配置工具。
EtherCAT实现以太网(EoE)
EtherCAT技术不仅完全兼容以太网,而且在“设计”之初就具备良好的开放性特征——该协议可以在相同的物理层网络中包容其它基于以太网的服务和协议,通常可将其性能损失降到最小。对以太网的设备类型没有限制,设备可通过交换机端口在EtherCAT段内进行连接。以太网帧通过EtherCAT协议开通隧道,这也正是VPN、 PPPoE (DSL) 等因特网应用所普遍采取的方法。EtherCAT网络对以太网设备而言是完全透明的,其实时特性也不会发生畸变(参见图13)。 EtherCAT设备可以包容其它的以太网协议,因此具备标准以太网设备的一切特性。主站的作用与第2层交换机所起的作用一样,可按照编址信息将以太网帧重新定向到相应的设备。因此,集成万维网服务器、电子邮件和FTP 传送等所有的因特网技术都可以在EtherCAT的环境中得以应用。
EtherCAT实现文件读取(FoE)
这种简单的协议与TFTP类似,允许存取设备中的任何数据结构。因此,无论设备是否支持TCP/IP,都有可能将标准化固件上载到设备上。
ADS over EtherCAT (AoE)
ADS over EtherCAT (AoE)是由EtherCAT规范定义的客户端-服务器邮箱协议。尽管CoE协议提供了详尽的描述,但AoE则更适合路由与并行服务的应用:通过网关设备访问子网络,如EtherCAT至CANopen® 或EtherCAT至IO-Link™ 网关设备。AoE使EtherCAT主站应用(如PLC程序)可以访问所属CANopen® 或 IOLink™从站的各个参数。AoE路由机制开销远低于因特网协议(IP)所定义的开销,并且发送方和接收方寻址参数始终包含在AoE报文中。因此,EtherCAT主站和从站端的实施更为精简。AoE也通过EtherCAT自动化协议(EAP)进行非周期通信的标准化,从而为上位机MES系统或主计算机、EtherCAT主站及其从属的现有设备之间提供无缝通信。同时,AoE也提供了从远程诊断工具获取EtherCAT网络诊断信息的标准化方法。
2.10 主站设计
EtherCAT可以在单个以太网帧中最多实现1486字节的分布式过程数据通讯。其它解决方案一般是,主站设备需要在每个网络周期中为各个节点处理、发送和接收帧。
而EtherCAT系统与此不同之处在于,在通常情况下,每周期仅需要一个或两个帧即可完成所有节点的全部通讯,因此,EtherCAT主站不需要专用的通讯处理器。主站功能几乎不会给主机CPU带来任何负担,轻松处理这些任务的同时,还可以处理应用程序,因此EtherCAT无需使用昂贵的专用有源插接卡,只需使用无源的NIC卡或主板集成的以太网MAC设备即可。EtherCAT主站很容易实现,尤其适用于中小规模的控制系统和有明确规定的应用场合。
例如,如果某个单个过程映像的PLC没有超过1486 字节,那么在其周期时间内循环发送这个以太网帧就足够了。因为报文头运行时不会发生变化,所以只需将常数报文头插入到过程映像中,并将结果传送到以太网控制器即可。
EtherCAT映射不是在主站产生,而是在从站产生(外围设备将数据插入所经以太网帧的相应位置),因此,此时过程映像已经完成排序。该特性进一步减轻了主机CPU的负担。可以看到,EtherCAT主站完全在主机CPU中采用软件方式实现,相比之下,传统的慢速现场总线系统通过有源插接卡方可实现主站的方式则要占用更多的资源,甚至服务于DPRAM的有源卡本身也将占用可观的主机资源。
系统配置工具(通过生产商获取)可提供包括相应的标准 XML 格式启动顺序在内的网络和设备参数。
已经在各种实时操作系统上实现了EtherCAT主站,包括但并不限于:eCos, INtime, MICROWARE OS-9,MQX, On Time RTOS-32, Proconos OS, Real-Time Java, RT Kernel, RT-Linux, RTX, RTXC, RTAI Linux,PikeOS, Linux with RT-Preempt, QNX, VxWin + CeWin, VxWorks, Windows CE, Windows XP/XPE with CoDeSys SP RTE, Windows NT/NTE/2000/XP/XPE/Vista with TwinCAT RTE, Windows 7 and XENOMAI Linux. 可以获得开源主站协议栈,作为示例代码或商业软件。也有各种公司提供各种硬件平台上的实施服务。可以在EtherCAT网站上的产品区找到快速增长的供应商信息[1]。
另一种EtherCAT主站的实现方式是使用样本代码,花费不高。软件以源代码形式提供,包括所有的EtherCAT主站功能,甚至还包括EoE(EtherCAT实现以太网)功能(见图15)。开发人员只要把这些应用于Windows环境的代码与目标硬件及所使用的RTOS加以匹配就可以了。该软件代码已经成功应用于多个系统。
2.11 从站设计
从站EtherCAT Processing Unit 总是位于 Port 0 之后其它端口之前,并在数据帧传输的过程中提取和插入数据:
DPRAM: 双端口存储器 Dual-Ported RAM,可以分别从主站及本地微处理器uC访问。访问 ESC 的 Dual-Ported RAM 读出 并/或 写入数据。
从器件具有一个16位Local地址空间:
地址范围0x0000:0x0FFF专用于EtherCAT寄存器,
地址范围0x1000:0xFFFF用作过程数据RAM
SyncManagers 阻止主站和从站微处理器(uC)同时访问 ESC存储区,确保数据的一致性
→ 含周期性数据 (Process Data) 和非周期性数据 (Mailbox)
FMMUs 为Lxx数据报文完成逻辑地址到物理地址的转换
→ 仅对于周期性数据 (Process Data)
从站的SyncManagers 和 FMMU 是由主站在初始化阶段自动配置的,该配置基于每个从站的XML文件和整个网络的设置。
EtherCAT从站设备使用一个价格低廉的从站控制器芯片ESC。从站不需要微处理器就可以实现EtherCAT通信。可以通过I/O接口实现的简单设备可以只由ESC和其下的PHY,变压器和RJ45接头。给从站的过程数据接口是32位的I/O接口。这种从站没有可配置的参数,所以不需要软件或邮箱协议。EtherCAT状态机由ESC处理。ESC的启动信息从EEPROM中读取,它也支持从站的身份识别。
更复杂的可配置从站有使用一个CPU。这个CPU和ESC之间使用8位或16位并行接口或串行SPI接口。要求的CPU性能取决于从站的应用,EtherCAT协议软件在其上运行。EtherCAT协议栈管理EtherCAT状态机和应用层协议,可以实现CoE协议和支持固件下载的FoE协议。EoE协议也可以实施。
从站控制器通常都有一个内部的DPRAM(DUAL PORT RAM),并提供存取这些应用内存的接口范围:
串行SPI(串行外围接口)主要用于数量较小的过程数据设备,如模拟量I/O模块、传感器、编码器和简单驱动等。该接口通常使用8位微控制器,如微型芯片PIC、DSP、Intel 80C51等(见图16)。
8/16位微控制器并行接口与带有DPRAM接口的传统现场总线控制器接口相对应,尤其适用于数据量较大的复杂设备。通常情况下,微控制器使用的接口包括Infineon 80C16x、Intel 80x86、Hitachi SH1、ST10、ARM和TI TMS320等系列(见图16)。
32位并行I/O接口不仅可以连接多达32位数字输入/输出,而且也适用于简单的传感器或执行器的32位数据操作。这类设备无需主机CPU(见图17)。
PDO(过程数据对象)、SDO(服务数据对象)
报文通过从站控制器时,从站读取出相关命令并进行对应处理,数据处理通过硬件完成,延间约为100-_500ns,通信性能独立于MCU的响应时间。每个ESC最大有容量为64KB的可用的内存编址,能进行连续或同步的读写。多个EtherCAT命令数据可以被嵌入到一个以太网报文中,每个数据对应独立的设备或内存区。
EtherCAT极大提高了以太网的性能,比如操作1000个I/O信号的时间约为30微秒。单个报文至多容纳1486字节的过程数据,和12000位I/O信号相当,更新所需时间约为300微秒。控制100个伺服单元的时间约为100微秒。
在基于PC的主站中,一般使用网络接口卡NIC(Network Interface Card)其中的网卡芯片集成了以太网通信控制器和物理层数据收发器。但是在嵌入式主站中,通信控制器通常集成在微处理器中。
EtherCAT从站设备同时实现应用控制和数据通信两部分功能,其组成如图所示,由四部分组成:从站控制微处理器、EtherCAT从站控制器ESC芯片、物理层器件和其他应用层器件。
EtherCAT报文由从站控制器来处理,使用双端口存储区完成主从站间的数据交换。每个从站ESC在环路上按各自的顺序移位读写数据。当数据帧经过从站时,ESC从中读取发送给自己的命令数据并放到内部存储区,插入的数据又被从内部 存储区写到子报文中。
从站控制微处理器主要负责处理EtherCAT通信和完成控制任务。微处理器从ESC获取控制数据实现设备控制功能,并采样设备的反馈数据写入ESC。从站控制微处理器的选型根据设备控制任务,可以使用ARM或DSP; 8位、16位或32位的处理器。EtherCAT从站采用MII接口模式时,需要使用标准以太网物理层器件:物理层芯片PHY,隔离变压器等。采用EBUS接口时不需要任何其他芯片。
3. 应用层(Application Layer)
3.1
3.2 EtherCAT Slave Implementation (从站实现)
DPRAM (双端口存储器)size and number of SyncManagers(同步管理 )
The DPRAM is used for exchange of cyclic and acyclic data(循环和非循环的数据交换) via the EtherCAT network. SyncManagers ensure data consistency(保证数据的一致性) within the DPRAM.
Each ESC has 4kByte of registers (addresses 0x0000 to 0x0FFF) which are reserved for (EtherCAT and PDI communication) configuration settings(配置设置 ).
Mailbox(邮箱) and process data is exchanged via additional DPRAM (also called user memory用户存储器 ). EtherCAT allows addressing(编址) of user memory of up to 60kBytes. ASICs provide between 1kByte and 8kByte of DPRAM, IP Cores can be configured to provide the full 60kByte of user memory.
Application Note: The standard SyncManager configuration is(标准的同步管理配置)
- 1 SyncManager per acyclic data output (mailbox out, master to slave)
- 1 SM for acyclic data input (mailbox in, slave to master)
- 1 SM for cyclic data output (process data out, master to slave)
- 1 SM for cyclic data input (process data in, slave to master)
For process data, SM running in 3-buffer-mode(3缓存模式) need three times the length (3倍长度) of actual process data for physical memory(物理内存) . The following table shows a schema(体系结构,模式) of how to allocate(分配) the length for the 4 SM.
Table 5: DPRAM Size Calculation Example( DPRAM大小计算示例)
SyncManagerBuffer CountLength [Byte]Total length [Byte]SM0Output Mailbox1L_MbxOut1*L_MbxOutSM1Input Mailbox1L_MbxIn+ 1*L_MbxInSM2Outputs3L_Out (TxPDO)+ 3*L_OutSM3Inputs3L_In (RxPDO)+3*L_In----∑ DPRAM size
SyncManagers are enabled(开启) by the following settings of the master during network initialization(网络初始化) .
-Physical address of ESC(ESC物理地址)
-Data length (数据长度)
-SyncManager control input(同步管理控制输入) :
i. Operation mode【操作模式】 (mailbox-mode/3-buffer-mode)
ii. Access direction【访问方向:读或者写】 (Read direction/Write direction)
iii. Interrupt settings 【中断设置】 (Valid/Invalid 有效/无效 )
iv. SyncManager watchdog setting【同步管理看门狗定时器设置】 (Valid/Invalid)
v. SyncManager setting (Valid/Invalid)
The default values are set in the ESI (chapter 2.4.1); the master initializes the SyncManager using the values from the ESI.(默认值在 ESI中设置,主站初始化时调用 ESI中的值)
Syncmanagers(同步管理器)
同步管理器简称SM用来协调应用程序和主机的数据交互,同步管理器同步的是数据而非时间,同步管理器确保了应用程序和主机能够正确的写入或读取数据。同时同步管理器可以以中断的形式通知主机和应用程序发生的数据更新事件。
从站的ESC中包含多个同步管理器,每一个同步管理器都可以单独的配置:
同步管理器的配置中包括告知同步管理器其需要管理的内存地址的范围,管理内存的属性(属于读或写,属于邮箱数据或过程数据)。
所以每一种数据交互方式都会有一个同步管理器来管理,应用程序进行数据交互时,只需要更具不同的同步管理器就可以方便的区分数据的类型(PDO 或SDO、读或写)。从站在初始化时会读取SM管理器中的配置来确定数据的存放地址。
数据的交互主要有缓冲模式和邮箱模式。缓冲模式主要应用于周期性过程数据的传送。
Number of Fieldbus Memory Management Units (FMMUs)(现场总线储存管理单元)
In an EtherCAT network, the memory of all slaves can be compiled in the master(所有从站的储存都可以在主站中编辑) to a logical memory(逻辑内存) . This logical memory is managed by FMMUs to map(映射) logical addresses to physical addresses in the slavesFMMUs(逻辑内存通过 的管理和从站中的物理内存相对应) .
For the FMMU configuration in a device, each consistent output and each consistent input block needs one FMMU and an additional FMMU for mailbox status response is necessary. // 对于设备中的FMMU配置,每个一致的输出和每个一致的输入块都需要一个FMMU,并且还需要一个用于邮箱状态响应的附加FMMU。
Application Note: The standard configuration is one FMMU per each, cyclic output and cyclic input data block , optionally an additional one for mapping the mailbox response availability flag into process data (thus, no polling of mailboxes is necessary). If the outputs and inputs are groupede.g. like in Table 5, 3 FMMUs are configured, see Table 6. // 应用说明:标准配置是每个循环输出和循环输入数据块一个FMMU,还可以选择另外一个用于将邮箱响应可用性标志映射到过程数据中(因此,不需要轮询邮箱)。 如果输出和输入被分组,例如 如表5所示,配置了3个FMMU,请参阅表6。
Table 6: FMMU Configuration
FMMUAssigned SyncManagerNameLength [Byte]1SM2OutputsL_Out (TxPDO)2SM3InputsL_In (RxPDO)3SM0 & SM1Mbx-SM Status FlagsMbx In/Out Length
Distributed Clocks (DCs(同步) with other slave devices,分布式时钟 ) for synchronization
Evaluate if the device should support high precise(支持高精度) synchronization with other slave devices. If so, DCs should be supported by the selected ESC. Distributed Clocks refer to the DC function for EtherCAT slaves (chapter 1.3.5). The times held by slaves are adjusted with this mechanism(途径) and thus enable precise synchronization of the nodes(节点) in the EtherCAT network. // 评估设备是否应支持与其他从设备的高精度同步。 如果是这样,所选的ESC应该支持DC。 分布式时钟指的是EtherCAT从站的DC功能(第1.3.5章)。 通过这种机制可以调整从站保持的时间,从而实现EtherCAT网络中节点的精确同步。
EEPROM(电可擦只读存储器)
The EEPROM is mounted(安装) outside the ESC and connected via I2C with point-to-point link(点对点连接) . According to the size of the EEPROM the EEPROM_SIZE signal should be set. For more details, refer to the Knowledge Base, chapter 11.3 d electrical Interface EEPROM an(I 2C)". For EEPROM (SII) Enhanced Link Detection setting (加强连接检测设置) , refer to documentation of the ESC vendor. // EEPROM安装在ESC外部,并通过I2C与点对点链接连接。 根据EEPROM的大小,应设置EEPROM_SIZE信号。 有关更多详细信息,请参见知识库第11.3章“电气接口EEPROM和(I 2C)”。有关EEPROM(SII)增强链接检测设置,请参阅ESC供应商的文档。
Application Controller【应用控制】 (Host Controller, μ C)
If a local software application provides the device functionality, any 8 or 16 bit synchronous or asynchronous microcontroller(任何一个 8位或者 16位同步或者异步微控制器) can be connected to the ESC. The application controller communicates with the ESC via the Process Data Interfaces (PDI).
To adapt the application software on the host(为了和主站的应用程序相适应 ) controller to the ESC, sample software stacks(样本软件栈) are available for communication implementation(通讯的实现), e.g. the Slave Sample Code(从站样本代码) (SCC). If the device is a 32 bit digital I/O interface, no application controller or additional communication software is necessary. // 为了使主机控制器上的应用软件适应ESC,可以使用示例软件堆栈进行通信实现,例如从机样本代码(SCC)。 如果设备是32位数字I/O接口,则无需应用程序控制器或其他通讯软件。
In most cases, manufacturers(制造商) can use a familiar microcontroller type as application controller in the EtherCAT device(使用相似型号的微控制器作为应用控制使用在 EtherCAT设备中) . If application software already exists, e.g. for a different fieldbus, it can be used for the EtherCAT device as well. // 在大多数情况下,制造商可以在EtherCAT设备中使用熟悉的微控制器类型作为应用程序控制器。 如果应用软件已经存在,例如 对于不同的现场总线,它也可以用于EtherCAT设备。
The source code(源代码) for communications software on the host controller allocates(分配) about 70kByte. The following features are a typical configuration (referring to the Slave Sample Code):
EtherCAT State Machine (ESM), including error handling(错误处理)
Device diagnosis(设备诊断)
Master-Slave data synchronization (主从站之间的数据同步) with SyncManager event (no DCs)
Mailbox CoE
Object Dictionary (对象字典) (20 objects) for process data objects (过程数据对象)
CoE services, including CoE Info services(信息服务) , no segmented transfer (无分割转换)
A list of other available sample stacks can be obtained on the product section of the ETG website.
Application Layer Communication Protocols (应用层通讯协议)
In EtherCAT, several protocols are available (see chapter 1.3.6) for the application layer to implement (实施) the required specification of the product development(产品开发时所需的规格) . When to apply them is described here.
CAN application protocol (总线应用协议 )over EtherCAT(CoE) To provide acyclic data exchange as well as mechanisms to configure PDOs for cyclic data exchange in a structured way, CoE (with SDO-Info support) should be implemented.
Servo drive profile(伺服驱动配置文件) over EtherCAT(SoE) SoE is an alternative drive profile to the CiA402 drive profile. It is often used by drive manufacturers which are familiar with the SERCOS interface.
Ethernet(以太网) over EtherCAT(EoE) EoE is usually used to provide webserver interfaces(网络接口) via EtherCAT. It is also used for devices providing decentral standard Ethernet ports(分散生产方式的标准以太网端口) . ? File Access(文件存取组件) over EtherCAT(FoE) If the device should support firmware(固件)download via EtherCAT, FoE should be supported. FoE is based on TFTP. It provides fast file transfer and small protocol implementation.
ADS over EtherCAT(AoE)小协议实施 When planning to control the device via a .Net interface, AoE is an option to apply.
Application Note:An exemplary(典范) CoE implementation is shown below.
The user application runs the device specific software(设备专用软件) on the μ C to implement device features(实现设备功能特性 ). Sample source code(protocol stacks) offered by EtherCAT stack vendors can be used to develop this application or to adapt existing software to EtherCAT.
Application Note:EtherCAT Slave Stack Code (SSC,从站堆栈代码 ).
The SSC is a free sample codefrom Beckhoff(德国倍福自动化有限公司)(免费样本代码) which provides an interface to the ESC. For hardware independent software development(独立于硬件的软件开发) , the SSC runs on several evaluation kits(评估板) and can be customized(自定义) for implementation in accordance with the product specification. Figure 14 shows the SSC structure with the interfaces to the user specific device application(用户特定的设备应用) and the ESC.
Application Note:EtherCAT Slave Protocol Stack.(从站协议栈)
Hilscher(德国赫优讯公司) offers a Slave Control Stack based on its netX hardware withDual Port Memoryinterface (DPM,双端口记忆器 ) and it is available for the user application with an API. Figure 15 shows the protocol stack architecture(协议栈构架) with interfaces to the ESC and the user application.
Device Profiles(设备配置文件)
During network initialization(网络初始化期间) , parameter setup(参数设定) is necessary, where data does not need to be transmitted cyclically(周期性传输) but only during network initialization. Acyclic data exchange is done via mailbox protocols(非循环的数据传输通过邮箱协议) , usually via theCoEprotocol (see chapter 2.3.5). For devices with variable process data structure, the definition of a modular device description(MDP,模块化设备描述 ) is available. The MDP is described in the ETG.5001 Modular Device Profile Specification(说明书) . // 在网络初始化期间,必须进行参数设置,这些数据不需要循环传输,而仅在网络初始化期间需要传输。 非循环数据交换是通过邮箱协议(通常通过CoE协议)完成的(请参阅第2.3.5章)。 对于具有可变过程数据结构的设备,可以使用模块化设备描述(MDP)的定义。 EDP.5001模块化设备配置文件规范中描述了MDP。
The MDP is based on the object dictionary defined byCoE(CAN application protocol over EtherCAT). The object dictionary can be described as a two dimensional list(二维表) . Each list entry (每个表的入口) is identified(识别) by an index(指针,索引) (0x0000–0xFFFF) which represents an object. Each object can contain up to 255 subindices(分目录) , also called object entries. The object list is structured in different areas, see Table 7. // MDP基于CoE(基于EtherCAT的CAN应用协议)定义的对象字典。 对象字典可以描述为二维列表。 每个列表条目均由代表对象的索引(0x0000-0xFFFF)标识。 每个对象最多可以包含255个子索引,也称为对象条目。 对象列表的结构在不同区域中,请参见表7。
The idea of the MDP is to provide a basic structure for masters(为主站提供一个基本构架) and configuration tools(配置工具) to handle(处理) slaves with complex (modular) structure easily. The user has the advantage, that if the slave variables’(变量)s are sorted in an MDP style, he can find the different data types by identical patterns(相同的模式) . // MDP的思想是为主机和配置工具提供基本结构,以轻松处理具有复杂(模块化)结构的从机。 用户的优势在于,如果以MDP样式对从属变量进行排序,则他可以通过相同的模式找到不同的数据类型。
The MDP can be applied to various types of devices. It is applicable to multiple axis(多轴) servo drive system(伺服驱动系统) of various functionality groups(各种功能组) , such as positioning(位置控制) , torque(扭矩控制) and velocity control(转速控制) . It is further applicable to gateway(网关) between different fieldbuses, i.e., Profibus, DeviceNet. Modular devices are driven by two aspects: // MDP可以应用于各种类型的设备。 适用于各种功能组的多轴伺服驱动系统,例如定位,转矩和速度控制。 它进一步适用于不同现场总线之间的网关,即Profibus,DeviceNet。 模块化设备由两个方面驱动:
Comprise(包含) physically connectable modules and plurality of functionalities(多数功能) .
//包括物理上可连接的模块和多种功能。
Comprise plurality of channels(多数通道) directly being connected to the EtherCAT network.
//包括多个直接连接到EtherCAT网络的通道。
The MDP imagines slaves which consist of one or several modules. A module can be hardware which is connected/disconnected to a slave. Examples are gateways between EtherCAT and e.g. CANopen or a bus coupler(总线耦合器) between EtherCAT and a proprietary backbone bus(专用主干总线) . // MDP设想从站由一个或几个模块组成。模块可以是已连接/断开连接到从站的硬件。示例是EtherCAT与例如CANopen或EtherCAT与专有骨干总线之间的总线耦合器。
A module can also be a logical module which describes data sets, e.g. a drive which supports a velocity controlled mode and a position controlled mode –the MDP would describe the data as two modules, one for each mode.(把数据描述成 2种模式,每个对应相应的模式) // 模块也可以是描述数据集的逻辑模块,例如。一个支持速度控制模式和位置控制模式的驱动器-MDP将数据描述为两个模块,每个模式一个。
No matter what kind of module is described it needs more or less the same information categories(需要相对应的信息分类) , which are organized in the profile specific index range (Table 7). // 无论描述哪种模块,它都或多或少需要相同的信息类别,这些信息类别在配置文件特定的索引范围内进行组织(表7)。
Application Note:Modular Device Profile Structure(模块化设备配置文件结构) . // 应用说明:模块化设备配置文件结构。
Consider an MDP for a line of slave device modules which are connected together on a backbone layer(主干网层面) via LVDS and via a coupler(耦合器) with MII. Figure 16 shows a schema how to define device profiles(如何定义设备配置文件) such that a modular profile dictionary is set up for the slave device line. // 考虑一排从设备模块的MDP,这些设备通过LVDS和带有MII的耦合器在主干层上连接在一起。图16显示了一种模式,该模式如何定义设备配置文件,以便为从属设备线设置模块化配置文件字典。
For implementation of the profile (CiA402 Drive Profile) for servo drive, build the program with reference to the corresponding specifications(技术规格,说明书) . In this example, this would be the
ETG.6010 Implementation Directive(指令) for the CiA402 Drive Profile, and
IEC 61800-7 Drive Profiles and Mapping to EtherCAT.
4. 应用实例
由于EtherCAT实时工业以太网技术具有适用范围广、拓扑结构灵活、数据通信效率高、实时性强和同步性能好等多种优点,所以特别适用于实时性要求高、通信数据量大的运动控制系统。
控制系统设计采用“PC+运动控制器”的方案,构建多轴运动控制系统,采用PC机为主站、ARM+MCX314为从站处理器的架构。其核心插补与控制算法都放在工业PC中完成,运动控制器要求大为降低,其主要完成数字给定量到实际脉冲信号的转变。该控制系统方案的优势在于简化硬件设计工作,主要以标准化的硬件为主:上位机可以采用工业PC机、下位机使用开发的通用运动控制器,方便日后升级维护。工业PC机与运动控制器直接采用EtherCAT实时工业以太网进行通信连接。
4.1 主站操作系统(RTAI)
PC机部分软件以LinuxCNC为基础,往下LinuxCNC通过HAL(硬件抽象层)与EtherCAT主站驱动之间进行通信连接,然后EtherCAT主站通过以太网线给从站运动控制器发控制命令;往上利用LinuxCNC提供的Python调用接口和人机界面通信,数控系统人机界面采用PyQt开发;由于LinuxCNC需要运行实时任务,需要将普通操作系统进行改造。因此,目前的主要工作是对Linux系统进行实时性改造、安装EtherCAT主站、编写HAL模块、编写人机界面。
虽然EtherCAT主站程序能够安装在非实时操作系统上,但一般情况下会对主站进行实时性改造,而且LinuxCNC中有运行实时任务的需要,所以对Linux系统进行实时性改造迫在眉睫。众所周知,Linux系统本质上是一个分时操作系统,不是一个实时操作系统。Linux系统实时性不强使其在嵌入式应用中有一定的局限性,受内核可抢占性、进程调度方式、中断处理机制、时钟粒度、虚拟内存管理等几个方面的制约。
根据实时性系统要求以及Linux的特点和性能分析,对标准Linux实时性的改造存在多种方法,较为合理的两大类方法为:直接修改Linux内核源代码和双内核法。
1.直接修改Linux内核源代码:对Linux内核代码进行细微修改并不对内核作大规模的变动,在遵循GPL协议的情况下,直接修改内核源代码将Linux改造成一个完全可抢占的实时系统。核心修改面向局部,不会从根本上改变Linux内核,并且一些改动还可以通过Linux的模块加载来完成,即系统需要处理实时任务时加载该功能模块,不需要时动态卸载该模块。这种方法存在的问题是:很难百分之百保证,在任何情况下,GPOS(通用操作系统)程序代码绝不会阻碍RTOS的实时行为。也就是说,通过修改Linux内核,难以保证实时进程的执行不会遭到非实时进程所进行的不可预测活动的干扰。2.双内核法:双内核法是在同一硬件平台上采用两个相互配合,共同工作的系统核心,通过在Linux系统的最底层增加一层实时核心来实现。其中的一个核心提供精确的实时多任务处理,另一个核心提供复杂的非实时通用功能。其优点是可以做到硬实时,并且能很方便地实现一种新的调度策略。目前采用这种方案的主要有RTAT,RT-Linux和Xenomai。本课题采用RTAI实时包的方式完成对Linux系统的实时性改造,如图所示。
RTAI(实时应用接口)是Linux内核的一个实时扩展,RTAI是基于ADEOSC Adaptive Domain Environment for Operating System)实现,ADEOS位于Linux系统和硬件之间管理硬件中断,并控制实时内核和Linux内核的优先级,其中实时内核优先级高于Linux内核优先级。
RTAI安装:
1.下载RTAI压缩包并解压到urs/src目录下,输入命令:
cd /usr/src
sudo tar -bzip2 -xvf rtai一3.8.tar.bz2
2.下载Linux内核压缩包并解压到urs/src目录下,输入命令:
sudo cp suoxd/linux-2.6.37.1.tar.bz2 /usr/src
sudo tar -bzip2 -xvf linux一2.6.32.2.tar.bz2
3.利用RTAI源码中的文件给内核打补丁,未安装p atch需安装patch后,输入命令:
sudo patch -pl
4.配置内核,Linux2.6.32引入新的方式用于简化kernel的配置,使用命令拷贝当前配置,省去很多繁琐的内核配置选项。
5.安装内核模块,输入命令:
sudo make clean
sudo make
sudo make modules
sudo make modules install
sudo make install
6.配置RTAI,下载安装MESA库文件和EFLTK包,然后进入RTAI文件夹,执行配置,输入命令:
cd /usr/src/rtai
sudo make config
7.编译并安装RTAI,命令行窗口的RTAI安装结果如图4-2所示,输入命令:
sudo make
sudo make install
8.RTAI内核延时测试,利用RTAI源码包中的测试案例进行测试,测试结果如下:
cd /usr/realtime/testsuite/user/latency
sudo ./run
9.RTAI内核抢占实现测试,测试结果如图4-4所示,输入命令行:
cd /usr/realtime/testsuite/user/preempt
sudo ./run
4.2 主站EtherCAT程序(IGH)
本控制系统EtherCAT主站以实时Linux操作系统为基础,在Linux环境下开发主站有两方面优势,一方面Linux为开源系统,方便对底层进行修改;另一方面便于进行嵌入式移植。Linux下的EtherCAT主站架构如图所示:
Linux操作系统可分为内核态和用户态。内核态是操作系统的核心,负责进程管理、内存管理、进程间通信和设备管理和驱动等,实时性要求高。用户态主要运行人机交互、数据监控等实时性要求不高的程序。
EtherCAT主站模块运行在内核态,可支持一个或多个EtherCAT主站,且同时提供应用接口和设备接口。用户通过应用接口访问主站,通过设备接口连接设备到指定主站。EtherCAT的以太网设备驱动模块通过主站设备接口与主站连接,EtherCAT设备协议可直接由以太网帧传送,因而主站能同时并行处理EtherCAT数据帧和通用以太网通信。
在Linux上安装EtherCAT主站程序,这里选择EtherLab开发的IgH EtherCAT Master,首先下载主站安装文件gHEtherLab.tar.bz2,下载文件后解压缩进入含有Makefile文件的目录安装主站,输入命令:
make ethercatMaster
make ethercatMasterinstall
sudo /etc/init.d/ethercat start
ethercat master
若最后两条指令运行正常则说明主站安装成功。
4.3 主站应用开发(LinuxCNC)
LinuxCNC是一款运行在Linux平台下的实时开源数控软件。起源于美国国家标准与技术研究院的增强型运动控制器EMC (Enhanced Machine Controller)研究项目,用于机床的数控系统。经过十几年的发展,LinuxCNC系统广泛用于冲床、车床、3D打印机、激光切割机、等离子切割机、机器人手臂等领域。其主要优点有:提供多个标准化的用户界面、用户也可以采用自主开发的GUI、自带G代码解析器、支持伺服电机控制步进电机开环控制、运动控制器功能强大、支持非笛卡尔坐标运动系统、采用2.4或2.6的Linux内核支持RT-Linux或RTAI实时补丁。LinuxCNC源代码可以免费下载,安装在Linux系统上。LinuxCNC软件架构如图所示。
LinuxCNC是一个模块化设计的软件,大致可以分为以下四个主要模块:运动控制器(EmcMot)、数字I/O控制器(EmcIO )、任务控制器(EmcTask )、图形用户界面(GUI)。
用户操作界面负责接收用户命令并反馈最新状态;
任务控制器是整个系统的决策层,主要负责对各种命令进行决策分类、解析发送给不同的模块;
运动控制器是实时刷新的,主要完成路径规划、插值运算等;
数字I/O控制器负责处理I/O信号,通过NML消息与运动控制器通信,因为不同设备I/O各不相同,这时需要硬件抽象层HAL文件建立软逻辑电路来控制实际I/O ;
HAL
HAL硬件抽象层是LinuxCNC系统的关键技术之一,通过引入HAL机制,为用户提供了统一的驱动开发接口,方便编写驱动,还能利用配置文件将相应的HAL模块连成一个复杂系统,方便数据传递。HAL模块结构图如图所示。
EtherCAT主站驱动与LinuxCNC之间采用HAL机制进行通信,硬件抽象层将各个底层的硬件驱动、实时算法抽象出来,构成一个组件,组件是由函数、参数、输入输出引脚所组成,输入信号包括来自LinuxCNC的控制信号、用户配置信息,输出信号包括提供给LinuxCNC的反馈量等。将编写好的HAL模块命令为ec.comp,编译生成ec.ko,利用insmod命令将其安装后就可以加载到线程中。
当HAL模块启动的时候,需要对变量进行初始化,但完成EtherCAT主站的初始化是更重要的,只有初始化了主站,设置好参数,建立起完整的通信网络,才能进行接下来的周期数据传输,其中PDO为进程数据对象、SDO为服务数据对象。如图为EtherCAT主站的初始化流程图。
主站初始化完成后,LinuxCNC开始正常运行。LinuxCNC在每个控制周期通过硬件抽象层下发控制命令,并获取从站设备反馈的信息。
HAL周期任务流程图如图所示。
对于采用位置控制的伺服单元,HAL模块每次都要计算出本控制周期的位移或目标点,然后通过EtherCAT总线发送到从站运动控制器;
然后从站运动控制器在每个控制周期上报编码器位置增量和I/O状态,HAL模块计算出轴的实际位置后发送给LinuxCNC。
UI界面
在Linux环境下开发用户界面的语言有Python, C++等,图形库有QT, GTK等。由于控制界面运行于用户态,实时性要求不高,同时兼顾开发难度和周期,本课题采用Python语言,结合PyQT图形库开发冲床控制界面。Python是一种面向对象的脚本语言,与其他语言相比,Python具有如下优点:面向对象、公开免费、跨平台可移植、功能强大、使用简单、模块丰富。QT是一个功能丰富广泛使用的GUI图形库,可用于Windows, Linux等平台,具有很好的可移植性。PyQt是Python语言与Qt图形库相结合的产物,从而可以通过Python来使用Qt图形库,具有模块丰富、跨平台和使用信号与槽机制的优点。数控界面调用LinuxCNC抽象出的Python接口与任务控制器通信,并监视LinuxCNC状态信息和错误信息。
本课题冲床数控系统设计加工状态、参数设置、警告与诊断和软件设置四个状态界面,四个状态界面下一共分设13个子界面,各个界面之间可以通过按钮进行切换,数控系统界面结构图如图所示。 系统的主界面由菜单栏、工作窗口、快捷工具栏和消息提示栏这四部分构成。菜单栏可以根据不同的操作需求切换不同的工作窗口,快捷工具栏是一些常用的快捷按钮,消息提示栏是提示快捷按钮内容和显示系统运行状况、错误信息汇报的区域,如图所示。 2.参数设置界面:参数设置界面用于设置控制系统及机械的参数,分设了系统参数设置、运动轴参数设置及模具库参数设置这3个子界面。下面主要讲解运动轴参数,运动轴参数设置界面如图所示。
3.警告与诊断界面:息记录界面这2个子界面。警告与诊断界面下设有警告信息诊断界面、历史警告信,如图所示。
4.软件设置界面:软件设置界面用于设置软件与外部设备的通讯参数和显示软件的版本等信息,设有软件信息、外部设备通讯设置及高级设置这3个子界面。下面讲解外部设备通讯设置界面,如图所示。
4.4 ET1200
EtherCAT从站控制器ESC(EtherCAT Slave Controller)是由德国BECKHOFF自动化有限公司提供的,包括ASIC芯片和IP-Core,实现EtherCAT数据链路层协议。目前ASIC从站控制专用芯片有ET1100和ET1200,也可以使用IP-Core将EtherCAT通信功能集成到设备控制FPGA当中,并根据需要配置功能和规模。图为ET1200从站控制器结构图: ET1200最多支持3个EtherCAT物理通信端口:
其中一个可以作为MII接口,用于与物理层PHY芯片交换数据。因为EtherCAT并不定义该接口的物理层,MII接口也是和传输介质无关接口,因此这种接口方式下的数据链路层与物理层彻底隔开,从而以太网能够选用任意的传输介质,包括无线电和光纤。ET1200其余两个接口均为EBUS接口,EBUS是德国倍福公司使用的LVDS(Low Voltage Differental Signaling)标准定义的数据传输标准,通信速率高达100Mbit/s,能与ESC芯片直接相连,减小PCB板体积和降低成本。EBUS的传输距离最大为10m。ET1200提供的物理设备接口有数字I/O和SPI两种,选用ARM作为从站微处理器是一般通过SPI接口访问ET1200。ET1200采用3.3 V供电,最大工作电流约为70mA,芯片发热量很小。
ET1200的主要技术指标:
ET1200从站控制器使用外部EEPROM来存储从站设备信息,下表是EEPROM存储数据分布示意图,其中0~63为基本信息,每次ESC启动时都会从EEPROM中读取其中的配置信息。
4.5 从站程序设计
运动控制器软件设计包括ARM主控制程序及外围电路驱动程序,外围驱动程序包括ET 1200驱动程序、AD采样芯片驱动程序、RS232驱动程序、SPI串行总线、FSMC并行总线驱动程序以及MCX314加减速控制程序设计等。运动控制器程序在STM32F427这款MCU上使用C语言开发,开发环境为Windows 7下的Keil uVision_5集成开发环境。
ARM主控制程序是运动控制器的核心,需要完成各个函数初始化、参数配置、数据处理、逻辑流程控制及控制算法运算等,图为支持查询模式(自由运行模式)的流程图。
ARM芯片在上电后不久进入main()函数,在main()函数中最先完成一系列系统正常运行相关函数的初始化,如延时初始化函数、LED初始化函数、串口初始化函数、中断向量表配置初始化函数,然后完成SPI初始化函数、定时器初始化函数、EtherCAT初始化函数以及FSMC总线初始化函数等。
接着完成通信初始化工作,查询主站的状态控制寄存器,读取事件请求寄存器0x220、相关配置寄存器,启动或关断相关通讯服务。
在完成以上工作后就进入主循环while(1),进行应用层任务处理和周期性数据处理,周期性数据处理和应用层任务处理有查询模式(自由运行模式)或同步模式(中断模式)这两种,本程序采用同步运行模式,所以在主循环中主要处理非周期性的任务。同步运行模式下周期性数据在中断服务程序中处理。
void main(void)
{
//--一执行一系列初始化函数--一
Delay_Init(168); //初始化延时函数
Led_Init(); //初始化LED端口
Uart_Init(9600); //初始化串口
AD7606_Init(); //初始化AD采样芯片
NVIC_Config(); //初始化STM32时钟及外设
SPI_Config(); //ET 1200用SPI总线初始化配置
Timer2_Init_ Config(); //Timer2初始化配置
ET 1200_GPIO_Config(); //ET 1200 GPIO初始化配置
ECAT_Init(); //初始化通信变量和ESC寄存器
FSMC_Init(); //FSMC并行总线初始化
//--一初始化完成,进入主循环--一
while(1)
{
ET1200_AlEvent=pEsc->AlEvent; //读应用层事件请求寄存器,
// ET1200_AlEvent为全局变量,在头文件中定义
if(!ET1200_IntEnabled) //处于自由运行模式(ET 1200_ IntEnabled -=0
//处于同步模式(ET1200 IntEnabled==1)
free_ run(); //处于自由运行模式时,进行周期性数据查询
el_event(); //应用层任务处理,包括状态机和非周期性数据等
}
}
从站设备可以运行于同步模式或自由运行模式,在自由运行模式中使用查询方式处理周期性过程数据,在同步模式使用中断服务程序处理性数据。
变量ET1200 IntEnabled来控制运行模式。ET1200 IntEnabled为1时,使用同步模式,ET1200 IntEnabled为0时,使用自由运行模式。
根据主站对SM的配置,在函数、参数初始化阶段来初始化变量ET1200_ IntEnabled,确定当前的运行模式。
本程序选择同步模式,以下将按照该模式讲解一个中断服务数据处理的工作流程,如图所示。
4.6 实验测试
实验测试平台由一台PC机、一套自主研发的冲床数控系统软件、一台自主研发的五轴高速运动控制器、一套单轴丝杠滑台、一套二维伺服平台、一套四轴同步测试架组成。
实验过程中需要注意,因为目前运动控制器专为数控冲床设计,仅保留1个M II接口连接主站,且设计最多连接轴数为五轴,故连接四轴同步测试架时不能接单轴丝杠滑台和二维伺服平台;测试过程中工业PC机和显示器使用笔记本代替。在平台上测试通过后将控制系统接入到LX230B型数控转塔冲床上进行测试和参数调试,最终成功开发出30T数控转塔冲床用高速运动控制系统。
基本通信功能测试
EtherCAT主从站基本通信功能测试时首先按图所示,使用网线将PC机与从站运动控制器连接起来后,在数控软件通信设置的外部设备通信设置中找到运动控制器连接状态,点击重新连接。使用Wireshark抓包工具抓取连接过程中主站广播的数据包,最终连接成功时运动控制器连接状态指示灯变为ON,从站状态变为操作状态(OP),从站状态机启动正常,如图所示。
由图可知该实验中EtherCAT报文的格式。报文总长度60个字节,前14个字节是以太网数据帧头,包括6字节的目的地址(ff:ff:ff:ff:ff:ff ) } 6字节的源地址(78:a5:04:c0:be:6f)} 2字节的帧类型(Ox88a4);接着是2字节的EtherCAT头,包括11位数据长度(Ox02a)}1位保留位(Ox0)}4位类型位(0x1);然后是EtherCAT数据,数据为2个子报文,每个子报文包含10字节子报文头,16字节数据,2字节WKC(工作计数器)。Wireshark抓取的报文与2.1节中的EtherCAT帧格式一 致,从而主从站之间实现了基本通信。
控制系统基本功能测试
控制系统基本功能测试是验证系统软硬件功能正常的重要实验,该项测试在单轴丝杠滑台完成,连接好PC机、运动控制器和单轴丝杠滑台,如图所示。在数控软件的手动加工中对输出I/O如伺服使能、紧急停止,回零点如X轴回零、Y轴回零,单轴位移控制如X+, X-, Y+, Y-进行测试,并观察滑台的运动情况和伺服驱动器面板显示来判断各项功能是否正常。经测试,软件上的相关按钮都工作正常,五个轴的接口、I/O接口工作正常,产生的脉冲精度误差为0。故数控系统软硬件基本功能测试通过。
G代码解释、圆弧插补测试
通过二维伺服运动平台圆弧插补实验测试运动控制系统G代码解释、圆弧插补等功能。该项测试主要在二维伺服平台上完成,连接PC机、运动控制器和二维伺服平台,如图所示,通过数控系统控制二维伺服运动平台的X轴和Y轴电机做圆弧插补,利用上方横梁固定的笔杆记录二维平台上白纸相对运动下的轨迹。二维平台中的两组伺服机丝杠的参数完全一致,丝杠螺距为20mm,设定伺服驱动器驱动电机旋转一圈为2000个脉冲,可知丝杠走1 mm需要100个脉冲,由此设置数控软件中的X, Y轴脉冲当量都为1000。
使用AutoCAD设计一个直径D为80mm的圆周,如图所示,绘制完成后保存为.dxf格式,然后使用一体化饭金CAD/CAM编程软件cncKad将.dxf格式的图纸转化为冲床数控软件所需的.PNC文件,即G代码。然后将G代码文件导入到数控软件中,预加工仿真运行无误后启动伺服,进行实际加工,最终得到实际绘制效果图如图_5 -6所示。绘制出的圆周尺寸精确,控制系统通过圆弧插补测试。
多轴运动的同步性能测试
多轴同步测试实验用来测试运动控制系统多轴运动的同步性能。该项测试主要利用四轴同步测试架完成,如图所示,测试架上固定安装有A, B, C, D共4组电机和驱动器。将电机驱动器与运动控制连接,控制器通过EtherCAT总线与PC机连接,打开数控软件,在加工状态中选择手动加工,控制伺服电机A, B,C, D同时做顺时针运动旋转,通过长时间运行测试观察轴上4个光盘指向分析电机运动的同步性。经过长时间测试观察后,电机按钮停止伺服轴转动,可以看到4个电机指向同一方向,驱动器面板显示脉冲数也一致。
实际产品应用
在上一节的一系列实验后,控制系统的各项功能都顺利通过测试,接下来把开发好的控制系统制作成便于使用的操作台和控制柜接入到LX230B型30T的数控转塔冲床上,取代原有的控制系统,操作台和控制柜如图所示。该冲床选用安川 -7系列AC伺服电机、 -V系列AC伺服驱动器。首先调试好伺服电机与伺服驱动器之间构成电流环、速度环的PID参数,让闭环的性能达到较好水平,再接入控制系统,其中编码器分频脉冲输出C相信号在轴回原点时使用。
为观测控制系统在数控转塔冲床上的应用效果,需要采用非接触测量仪测量板材运动过程中的振动曲线。根据实验室现有的条件,采用由日本Keyence公司生产的LK-G400型激光位移传感器和LK-GD_500型控制器作为非接触式测量工具。 LK-G400的主要技术参数为:使用距离为400mm,测量范围为士100mm,取样率20us,钡量精度为gum o LK-GD_500型控制器主要参数为:最小显示单位为O.Olum,显示周期10次/秒。
在冲床大板材(1200mm X 2_SOOmm)上选取测试点W点,如图所示。采用S型曲线加减速规划,加速度g为6,控制板材在X轴上高速移动lOmm,运动控制器输出的PULS(脉冲)信号局部波形如图所示。
使用软件LK-Navigator读取传感器测量的数据,如图所示。由图分析可知调节时间为130ms(按士0._5%误差带)、稳态误差士0.0_Smm,各项指标良好,达到工业应用要求。
5. 工具
5.1 TwinCAT
EtherCAT主站方案实现一般都采用倍福公司的TwinCAT, TwinCAT实现了强大的EtherCAT主站功能,从站XML表配置、EEPROM配置文件操作、扫描EtherCAT从站等,下图为使用TwinCAT开发冲床数控系统的过程。因为TwinCAT是基于Windows风格,拥有较好的人机交互界面,功能强大,非常适合上位机控制窗口的开发,但TwinCAT运行于Windows环境下,实时性很差,而且TwinCAT和Windows系统需要付费才能商业化应用,价格较高。
在学习EtherCAT的时候,TwinCAT是必须要学习的。TwinCAT软件其功能强大,可以写plc程序,可以写图形化界面,可以观察波形等等。初次学习时我就参考TwinCAT 3运动控制教程和TwinCAT NC PTP实用教程,把TwinCAT 3中界面的一些功能都试了一遍。另外用功能块学着写了凸轮、齿轮的程序,并用Visualization图形化界面来控制。(在学习TwinCAT时,要充分利用好帮助文档)。
因为我的任务是做一致性测试,所以关注点大部分放在了对协议的了解上,涉及到一致性测试的文档有ETF7000.2、ETG7010。具体可以去ETG官网上查找相关资料。做一致性测试时需要用到ET9400,这款软件不是免费的。目前还没开始测这部分。
对于带有EtherCAT伺服驱动器的性能的测试,用TwinCAT带着简单测过csp、csv、cst这三种模式。如果想要系统的测试驱动器所支持的操作模式,必须对驱动器的相关知识有一定的了解。另外就是对对象字典中对象充分了解。TwinCAT中的Process Data和CoE-Online界面是很重要的。这点我也没有完全掌握。没有以太网基础,对协议没有了解,直接接触EtherCAT这条学习之路感觉很艰难!
5.2 LinuxCNC
PC机部分软件以LinuxCNC为基础,往下LinuxCNC通过HAL(硬件抽象层)与EtherCAT主站驱动之间进行通信连接,然后EtherCAT主站通过以太网线给从站运动控制器发控制命令;往上利用LinuxCNC提供的Python调用接口和人机界面通信,数控系统人机界面采用PyQt开发;由于LinuxCNC需要运行实时任务,需要将普通操作系统进行改造。因此,目前的主要工作是对Linux系统进行实时性改造、安装EtherCAT主站、编写HAL模块、编写人机界面。
5.3 开源的EtherCAT Master
EtherCAT的主站开发是基于EtherCAT机器人控制系统的开发中非常重要的环节。目前常见开源的主站代码为的RT-LAB开发的SOEM (Simple OpenSource EtherCAT Master)和EtherLab的the IgH EtherCAT® Master。使用起来SOEM的简单一些,而the IgH EtherCAT® Master更复杂一些,但对EtherCAT的实现更为完整。
具体比较如下表:
参考资料
EtherCAT协议介绍.pdfEtherCAT Technology Group _ 技术概览记录STM32开发一个完整的EtherCAT的过程
优惠劵
pwl999
关注
关注
209
点赞
踩
1343
收藏
觉得还不错?
一键收藏
知道了
23
评论
EtherCAT (学习笔记)
文章目录1. 简介1.1 运动控制1.2 实时以太网1.3 EtherCAT2. EtherCAT原理介绍2.1 实时性2.2 端口管理2.3 EtherCAT网络拓扑2.4 EtherCAT网络协议栈2.5 EtherCAT数据帧格式2.6 EtherCAT设备寻址方式2.7 分布式时钟(Distribute Clock)2.8 应用层(Application Layer)2.9 设备配置(Device Profile)2.10 主站设计2.11 从站设计3. 应用层(Application Layer)
复制链接
扫一扫
专栏目录
EtherCAT中文介绍
10-22
实时以太网EtherCAT中文介绍资料,英文不好的可以参考一下。EtherCAT(以太网控制自动化技术)是一个开放架构,以以太网为基础的现场总线系统,其名称的CAT为控制自动化技术(Control Automation Technology)字首的缩写。EtherCAT是确定性的工业以太网,最早是由德国的Beckhoff公司研发。
EtherCAT Slave Stack Code (SSC)
05-28
BECKHOFF(倍福)官方提供EtherCAT从站协议栈代码生成工具
版本:SSC V5.12(Tool 1.4.2)
23 条评论
您还未登录,请先
登录
后发表或查看评论
EtherCAT EoE
最新发布
weilan0818的博客
01-16
453
EoE:将以太网帧插入到 EtherCAT 协议中。EtherCAT协议中的以太网帧通过非循环邮箱通信进行传输。
Ethercat概念学习
weixin_43914278的博客
04-10
1583
最近我们要基于Ethercat技术进行开发,首先需要了解其基本原理,github上看到了有相关实现,一起来看看吧。
EtherCAT.rar
08-12
搜集的EtherCAT官方相关资料,学习EtherCAT参考资料, 协议说明等等
ethercat学习笔记1
08-08
代码的笔记放到第二章。1.8 松下的从站 PDO映射。6040h控制字这个控制字是用来控制伺服电机上使能的。6041状态字这个状态字读取伺服电机的状态。控制模式
EtherCAT介绍
人人都懂物联网
03-11
1万+
EtherCAT(以太网控制自动化技术)是一个以以太网为基础的开放架构的现场总线系统,EtherCAT名称中的CAT为Control Automation Technology(控制自动化技术)首字母的缩写。最初由德国倍福自动化有限公司(Beckhoff Automation GmbH) 研发。EtherCAT为系统的实时性能和拓扑的灵活性树立了新的标准,同时,它还符合甚至降低了现场总线的使用成本。
EtherCAT简介
weixin_41883890的博客
06-30
2394
EtherCAT(用于控制自动化技术的以太网)是Beckhoff(倍福)在2003年开发的实时以太网网络。它基于CANOPEN协议和以太网,但是与Internet通信或网络通信不同之处在于,它专门针对工业自动化控制进行了优化。这些标准由EtherCAT技术小组(简称ETG)定义和维护。使用OSI网络模型,以太网和EtherCAT依赖于相同的物理和数据链路层。除此之外,由于针对不同任务进行了优化,因此这两个网络在设计上有所不同。例如,以太网被设计为通过许多不同的节点发送大量数据。它能够与数十亿个单独的地址之间
【EtherCAT】一、入门基础
06-09
5266
EtherCAT(Ethernet Control Automation Technology)是一种高性能实时以太网通信协议,用于在工业自动化领域中进行实时控制和通信。它是由德国Beckhoff自动化公司在2003年开发的,并被国际电工委员会(IEC)标准化为IEC 61158标准。EtherCAT的设计目标是实现极低的通信延迟和高带宽的数据传输,以满足高速控制和数据采集的需求。它通过一种特殊的主从架构实现,其中一个主站(Master)负责协调整个网络,而从站(Slave)则负责提供输入输出功能。
工控协议解读之EtherCAT协议硬核分析(转自知乎“智能制造之家“)
qq_43599327的博客
09-07
7036
EtherCAT协议
ethercat_slave_stack_code_tool_SSC_V5i12.rar
08-13
EtherCAT Slave Stack Code Tool 倍福官方从站开发工具5.12版本。
Ethercat xml规范
05-12
Ethercat xml规范
ethercat总结
02-14
ethercat总结,主要是Ethercat基础介绍,运行原理与常用协议说明
EtherCAT学习之路——概述
chenweizhen1991的博客
03-13
1万+
首发于知乎
最近在做基于EtherCAT的项目,看了一些网上的博客,感觉写的都比较松散。虽然,自己也是才开始学习,希望能把这段时间学到的东西总结一下。
1.EtherCAT简介
EtherCAT是由德国BECKHOFF自动化公司于2003年提出的实时工业以太网技术。它具有高速和高数据有效率的特点,支持多种设备连接拓扑结构。其从站节点使用专用的控制芯片,主站使用标准的以太网控制器。
Et...
EtherCAT 应用层协议的部分理解(一)
热门推荐
王三三
06-22
2万+
不对EtherCAT进行介绍,只谈谈对EtherCAT应用层协议的简单理解1、COE (CANopen over EtherCAT) 一种基于且完全遵循CANopen协议的通信协议 用途:
1、用于驱动PDO对象,实现PDO对象间数据通信
2、用于驱动SDO对象,实现SDO对象间的数据传输 分类:
1、周期性过程数据通信 – 驱动PDO
[工业互联-23]:EtherCat从站 - EtherCAT协议栈与工作原理, 软硬件解决方案
文火冰糖(王文兵)的博客
07-10
2163
在EtherCAT(以太CAT)网络中,从站(Slave)是指通过EtherCAT总线连接到主站(Master)的外部设备或模块。从站通常是实时控制系统中的执行器(写)、传感器(读)、驱动器(写)等外部设备。从站在EtherCAT网络中起到了连接外部设备和主站之间的桥梁作用。它们接收主站发送的命令和控制信息,根据指令执行相应的操作,并将执行结果和实时数据通过EtherCAT总线返回给主站。每个从站在EtherCAT网络中都有一个唯一的站地址。
EtherCat 从站控制芯片
weixin_46024116的博客
01-05
973
EtherCat 从站控制芯片简称ESC,是实现EtherCat数据链路层协议的专用芯片,用作处理EtherCat数据帧,并为从站控制装置提供数据接口,简单说就是一般我们的MCU不支持EtherCat(当然也有支持的,支持的就不需要ESC),ESC就是个转换器,一般和MCU选择串行(SPI)的方式来通信。ESC存储空间:前面讲到ESC具有64K字节的DPRAM,前4K(0x0000–0x0FFF)字节的寄存器空间。
1.ethercat基本概念
weilan0818的博客
05-24
608
EtherCAT(以太网控制自动化技术)是一个开放框架,以以太网为基础的现场总线系统。是实时以太网的一种。实时以太网是常规以太网技术的延伸,以便满足工业控制领域的实时性数据通信要求。实时以太网有powerlink,profinet,sercosⅢ,ethercat等等。基于TCP/IP的实现:Modbus/TCP, Ethernet/IP基于以太网的实现:powerlink, profinet RT修改以太网的实现:EtherCAT, Sercos3, profinet IRT。
Ethercat学习资料
04-02
以下是关于EtherCAT学习资料的一些推荐:
1. EtherCAT官方网站:https://www.ethercat.org/
官方网站提供了EtherCAT协议的详细介绍、技术规范、应用案例等内容,是学习EtherCAT的重要参考资料。
2. EtherCAT技术手册
EtherCAT技术手册是一本详细介绍EtherCAT协议的书籍,包括EtherCAT协议的基本原理、应用案例、网络拓扑结构等内容,对于学习EtherCAT协议非常有帮助。
3. EtherCAT开发者论坛:https://forum.ethercat.org/
EtherCAT开发者论坛是一个交流和分享EtherCAT开发经验的平台,里面有很多有关EtherCAT协议的讨论和问题解答,对于学习和开发EtherCAT应用非常有帮助。
4. EtherCAT开发工具
EtherCAT开发工具包括EtherCAT协议分析器、EtherCAT节点开发工具等,可以帮助开发者更好地理解和开发EtherCAT应用。
5. EtherCAT培训课程
EtherCAT培训课程可以帮助初学者快速入门EtherCAT协议,掌握EtherCAT网络的设计和应用,提高开发效率。
总之,学习EtherCAT需要系统的学习和实践,建议初学者从官方网站入手,逐步深入学习,同时结合实际应用场景进行实践。
“相关推荐”对你有帮助么?
非常没帮助
没帮助
一般
有帮助
非常有帮助
提交
pwl999
CSDN认证博客专家
CSDN认证企业博客
码龄16年
暂无认证
142
原创
1万+
周排名
3万+
总排名
68万+
访问
等级
6905
积分
1510
粉丝
898
获赞
150
评论
4870
收藏
私信
关注
热门文章
EtherCAT (学习笔记)
67258
Xenomai (学习笔记)
21769
Device Tree 详解
19630
Unwind 栈回溯详解
18367
Linux bpf 1.1、BPF内核实现
18328
分类专栏
Linux Kernel解析
51篇
Riscv
2篇
Trace
29篇
Arm Linux
11篇
Android
1篇
Linux 驱动三板斧
21篇
Linux Monitor
9篇
Security
12篇
Misc
6篇
VxWorks
6篇
Stability
2篇
Performance
1篇
Power
Virtualization
2篇
RealTime OS
3篇
Motion Control
3篇
AI
最新评论
RISCV 入门 (学习笔记)
中南甘帅问贴贴:
开芯院和日报的网址都寄掉了,不看好riscv的未来
Linux usb 4. Device 详解
努力学习LINUX的嵌入式开发工程师:
我怎么没早点看到你
Linux usb 7. Linux 配置 ADBD
-Promise810:
其实不用执行命令 我记得/etc/ 目录下有个启动脚本专门 执行命令的 你可以看看那个脚本怎么写的
Linux usb 7. Linux 配置 ADBD
一名不会算法的在职算法工程师:
老兄,你还记得执行什么命令吗?
Linux usb 7. Linux 配置 ADBD
-Promise810:
检查一下设备树配置 对应的 usb 接口是否支持从机模式 支持的话 这个usb控制器就能出现
您愿意向朋友推荐“博客详情页”吗?
强烈不推荐
不推荐
一般般
推荐
强烈推荐
提交
最新文章
Linux 驱动模块内存精简
Linux Phy 驱动解析
Linux mem 2.8 Kfence 详解
2023年1篇
2022年5篇
2021年29篇
2020年43篇
2018年26篇
2017年45篇
目录
目录
分类专栏
Linux Kernel解析
51篇
Riscv
2篇
Trace
29篇
Arm Linux
11篇
Android
1篇
Linux 驱动三板斧
21篇
Linux Monitor
9篇
Security
12篇
Misc
6篇
VxWorks
6篇
Stability
2篇
Performance
1篇
Power
Virtualization
2篇
RealTime OS
3篇
Motion Control
3篇
AI
目录
评论 23
被折叠的 条评论
为什么被折叠?
到【灌水乐园】发言
查看更多评论
添加红包
祝福语
请填写红包祝福语或标题
红包数量
个
红包个数最小为10个
红包总金额
元
红包金额最低5元
余额支付
当前余额3.43元
前往充值 >
需支付:10.00元
取消
确定
下一步
知道了
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝
规则
hope_wisdom 发出的红包
实付元
使用余额支付
点击重新获取
扫码支付
钱包余额
0
抵扣说明:
1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。 2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。
余额充值
EtherCAT Technology Group | EtherCAT Compendium
EtherCAT Technology Group | EtherCAT Compendium
EN
|
DE
|
ES
|
IT
|
CN
|
JP
主页
新闻
市场活动
新闻发布
联系方式
会员专区
搜索
技术概览 协会组织 常见问题 会员相关 供应商ID 产品指南 资料下载 一致性测试 EtherCAT G EtherCAT P Safety over EtherCAT EtherCAT 和 TSN 技术汇编 开发者论坛 知识库
退出
EtherCAT技术汇编
《EtherCAT技术汇编》提供了有关EtherCAT技术细节、系统、实施和用户层面的全面且连贯的描述。
它涵盖了从正式规范及其相关参考部分到易于阅读、实用及具体应用方面的内容。
《EtherCAT技术汇编》针对来自ETG会员单位的感兴趣的读者、研发人员、支持工程师、测试工程师、学生以及学者。
《EtherCAT技术汇编》分为几个部分:首先是已发布的部分“技术细节”,接下来是“EtherCAT简介”、“系统层面”、“实施层面”和“用户层面”的内容。
各个章节将陆续发布,从而形成完整的《EtherCAT技术汇编》。
新的章节也将不断推出。《EtherCAT技术汇编》最新版可以通过右侧链接进行下载(需会员登录)。发布日期即为《EtherCAT技术汇编》的版本。
Section I: EtherCAT introduction
Section II: Technology details
EtherCAT Device Protocol technology basics
Physical layer and cabling
Data link layer
SII configuration area
Distributed Clocks
Interrupts
EtherCAT State Machine
Explicit Device Identification
Application layer protocols
Process data communication
Indicator, labeling, marking rules
Device profiles
Safety over EtherCAT
EtherCAT SubDevice Information
EtherCAT Automation Protocol
Section III: System aspects
MainDevice and configuration
Performance
Explicit Device Identification
Hot Connect
Cable redundancy
Error handling
EtherCAT P
MainDevice redundancy
Section IV: Implementation aspects
MainDevice implementation
SubDevice implementation
Licence
Conformance
Section V: User aspects
下载
EtherCAT Compendium (PDF)
更新日期:2024年03月13日
订阅
通过开发者论坛获取更新通知
反馈
compendium@ethercat.org
EtherCAT - 维基百科,自由的百科全书
EtherCAT - 维基百科,自由的百科全书
跳转到内容
主菜单
主菜单
移至侧栏
隐藏
导航
首页分类索引特色内容新闻动态最近更改随机条目资助维基百科
帮助
帮助维基社群方针与指引互助客栈知识问答字词转换IRC即时聊天联络我们关于维基百科
搜索
搜索
创建账号
登录
个人工具
创建账号 登录
未登录编辑者的页面 了解详情
贡献讨论
目录
移至侧栏
隐藏
序言
1机能原理
2通讯协定
3性能
4拓扑
5同步
6设备行规
7机能安全
8实现
9参考资料
10其他参考资料
11外部链接
开关目录
EtherCAT
11种语言
CatalàDeutschEnglishEspañolفارسیFrançais日本語한국어PortuguêsРусскийSlovenščina
编辑链接
条目讨论
大陆简体
不转换简体繁體大陆简体香港繁體澳門繁體大马简体新加坡简体臺灣正體
阅读编辑查看历史
工具
工具
移至侧栏
隐藏
操作
阅读编辑查看历史
常规
链入页面相关更改上传文件特殊页面固定链接页面信息引用本页获取短URL下载二维码维基数据项目
打印/导出
下载为PDF可打印版
维基百科,自由的百科全书
EtherCAT(以太网控制自动化技术[1])是一个开放架构,以以太网为基础的现场总线系统,其名称的CAT为控制自动化技术(Control Automation Technology)字首的缩写。EtherCAT是确定性的工业以太网,最早是由德国的Beckhoff公司研发[2]。
自动化对通讯一般会要求较短的资料更新时间(或称为周期时间)、资料同步(英语:Data synchronization)时的通讯抖动量低,而且硬件的成本要低,EtherCAT开发的目的就是让以太网可以运用在自动化应用中。
机能原理[编辑]
一般工业通讯的网络各节点传送的资料长度不长,多半都比以太网帧的最小长度要小。而每个节点每次更新资料都要送出一个帧,造成带宽的低利用率,网络的整体性能也随之下降。EtherCAT利用一种称为“飞速传输”(processing on the fly)的技术改善以上的问题[3]。
EtherCAT 运作动画
在EtherCAT网络中,当资料帧通过EtherCAT节点时,节点会复制资料,再传送到下一个节点,同时识别对应此节点的资料,则会进行对应的处理,若节点需要送出资料,也会在传送到下一个节点的资料中插入要送出的资料[2]
。每个节点接收及传送资料的时间少于1微秒,一般而言只用一个帧的资料就可以供所有的网络上的节点传送及接收资料。
通讯协定[编辑]
EtherCAT通讯协定是针对程序资料而进行优化,利用标准的IEEE 802.3以太网帧传递,Ethertype为0x88a4。其资料顺序和网站上设备的实体顺序无关,定址顺序也没有限制。主站可以和从站进行广播及多播等通讯。若需要IP路由,EtherCAT通讯协定可以放入UDP/IP资料包中。
性能[编辑]
EtherCAT的周期时间短,是因从站的微处理器不需处理以太网的封包。所有程序资料都是由从站控制器的硬件来处理。此特性再配合EtherCAT的机能原理,使得EtherCAT可以成为高性能的分散式I/O系统:包含一千个分散式数位输入/输出的程序资料交换只需30us[2],相当于在100Mbit/s的以太网传输125个字节的资料。读写一百个伺服轴的系统可以以10 kHz的速率更新,一般的更新速率约为1–30 kHz,但也可以使用较低的更新速率,以避免太频繁的直接内存存取影响主站个人电脑的运作。
拓扑[编辑]
EtherCAT使用全双工的以太网实体层,从站可能有二个或二个以上的埠。若设备没侦测到其下游有其他设备,从站的控制器会自动关闭对应的埠并回传以太网帧。由于上述的特性,EtherCAT几乎支援所有的网络拓扑,包括总线式、树状或是星状,现场总线常用的总线式拓扑也可以用在以太网中。
EtherCAT的拓扑可以用网络线、分枝或是短线(stub)作任意的组合。有三个或三个以上以太网接口的设备就可以当作分接器,不一定一定要用网络交换器。
由于使用100BASE-TX的以太网物理层,二个设备之间的距离可以到100米,一个EtherCAT区段的网络最多可以有65535个设备。若EtherCAT网络是使用环状拓扑(主站设备需要有二个通讯埠),则此网络还有缆线冗余的机能。
同步[编辑]
为了系统的同步,EtherCAT协定中有提供分散式时钟机制,即使通讯循环周期有抖动,时钟的抖动远小于1µs,大约接近IEEE 1588精密时间协议(英语:Precision Time Protocol)的标准。因此EtherCAT的主站设备不需针对时钟使用特殊的硬件,可以用软件实现在任何标准的以太网MAC,即使没有特殊的通讯协处理器也没有关系。
标准建立分散式时钟的程序是由主站送出一特定位址的广播讯息给所有从站来启动。若使用环状拓扑,所有从站会在收到讯息时闩锁内部时钟,当讯息回来时会再闩锁内部时钟一次。主站会读所有从站闩锁的值,计算各个从站的延迟。为了消除抖动的影响及求得平均值,主站会尽可能的多次进行上述的程序。所有的从站延迟会依各从站在从站环状拓扑的位置来计算,并记录在一个偏移寄存器中。最后主站送出一个读写系统时钟的广播讯息,会使第一个从站的时钟为参考时钟,其他从站的内部时钟会调整到和第一个从站相同。
为了在初始化后保持时钟的同步,主站或从站需定期的再送出广播讯号,以计算各个从站内部时钟的速度差异,若有需要时,从站需要可以调整自身时钟的速度,或是有其他调整时钟的机制。
系统时钟是一个64位元的计时器,计数内容是从2000年1月1日0点0分开始所经过的时间,单位是纳秒(ns)。
设备行规[编辑]
设备行规(device profile)描述应用需要的参数及设备的机能特性,包括可能依设备种类而不同的状态机。总线技术中已有许多可靠的设备行规,例如I/O设备、驱动器或阀等设备。EtherCAT同时支援CANopen设备行规及Sercos(英语:SERCOS interface)驱动器行规。从CANopen或Sercos移植到EtherCAT时,在应用观点看到的内容是一様的,也可方便使用者或设备制造商的转换。
机能安全[编辑]
EtherCAT有一个加强的协定版本,称为Safety over EtherCAT,可以在同一个网络上进行机能安全相关的通讯和一般的控制通讯。此安全通讯是以EtherCAT的应用层为基础,不会影响底层的通讯协定[4]。Safety over EtherCAT有通过IEC 61508的认证,符合安全完整性等级(SIL)3的要求。自2005年起已有使用Safety over EtherCAT的产品上市。
实现[编辑]
EtherCAT主站可以用软件,在标准的以太网MAC中实现。许多供应商有提供在不同操作系统下的程式码,也有许多开源软件或共享软件。EtherCAT从站需要特殊的EtherCAT从站控制器,才能实现飞速传输(processing on the fly)的技术。EtherCAT从站控制器可以用FPGA来实现,且已有现成的代码,此控制器也可以用ASIC来实现。
参考资料[编辑]
^ 自動化在線 EtherCAT簡介. [2012-08-23]. (原始内容存档于2016-03-04).
^ 2.0 2.1 2.2 cechina EtherCAT 原理介紹. [2012-08-23]. (原始内容存档于2016-03-04).
^ ethercat.org EtherCAT簡介 (PDF). [2012-08-23]. (原始内容 (PDF)存档于2012-07-21).
^ The safety solution for EtherCAT (PDF). [2012-08-24]. (原始内容存档 (PDF)于2012-07-21).
其他参考资料[编辑]
Büttner, H.; Janssen, D.; Rostan, M., 存档副本 (PDF), PC Control Magazine, 2003, 3: 14–19 [2012-09-11], (原始内容 (PDF)存档于2012-02-19) |contribution=被忽略 (帮助)
Janssen, D.; Büttner, H., Computing & Control Engineering Journal, 2004, 15: 16–21 |contribution=被忽略 (帮助); 缺少或|title=为空 (帮助)
Rostan, M., High Speed Industrial Ethernet for Semiconductor Equipment, SEMI Technical Symposium: Innovations in Semiconductor Manufacturing (PDF), San Francisco, CA, USA: SEMI, 2004 [2012-09-11], (原始内容存档 (PDF)于2012-07-21)
Potra, S.; Sebestyen, G., EtherCAT Protocol Implementation Issues on an Embedded Linux Platform, IEEE-TTTC International Conference on Automation, Quality and Testing, Robotics AQTR 2006, Cluj-Napora, Romania: IEEE: 420–425, 2006
Robertz, S. G.; Nilsson, K.; Henriksson, R.; Blomdell, A., Industrial robot motion control with real-time Java and EtherCAT, 12th IEEE International Conference on Emerging Technologies and Factory Automation, Patras, Greece: IEEE, 2007
Beckmann, G.; Sachs, J., 存档副本 (PDF), PC Control Magazine, 2007, 1: 22–27 [2012-08-24], (原始内容存档 (PDF)于2012-07-21) |contribution=被忽略 (帮助)
Cena, Gianluca; Cibrario Bertolotti, Ivan; Scanzio, Stefano; Valenzano, Adriano; Zunino, Claudio, On the accuracy of the distributed clock mechanism in EtherCAT, Factory Communication Systems (WFCS), 2010 8th IEEE International Workshop on, Nancy, France: IEEE: 43–52, 2010 [2012-09-11], doi:10.1109/WFCS.2010.5548638, (原始内容存档于2019-10-16)
外部链接[编辑]
EtherCAT Technology Group(页面存档备份,存于互联网档案馆)
EtherCAT Technology Group China(页面存档备份,存于互联网档案馆)
查论编自动化通讯协定程序自动化
AS-i
BSAP(英语:Bristol Standard Asynchronous Protocol)
CC-Link
CIP
CAN
CANopen
DeviceNet
ControlNet
DF-1(英语:DF-1 Protocol)
DirectNET(英语:DirectNET Protocol)
EtherCAT
Ethernet Global Data (EGD)(英语:Ethernet Global Data Protocol)
Ethernet Powerlink
EtherNet/IP
Factory Instrumentation Protocol(英语:Factory Instrumentation Protocol)
FINS(英语:Factory Interface Network Service)
Foundation现场总线
H1(英语:Foundation Fieldbus H1)
HSE
GE SRTP(英语:Service Request Transport Protocol)
HART
Honeywell SDS(英语:SDS Protocol)
HostLink
INTERBUS
MECHATROLINK
MelsecNet(英语:MelsecNet)
Modbus
IO-Link
Optomux(英语:Optomux)
PieP(英语:PieP)
Profibus
PROFINET IO
RAPIEnet(英语:RAPIEnet)
SERCOS interface(英语:SERCOS interface)
SERCOS III(英语:SERCOS III)
Sinec H1(英语:Sinec H1)
SynqNet(英语:SynqNet)
TTEthernet(英语:TTEthernet)
工业控制系统
MTConnect(英语:MTConnect)
OPC DA(英语:OPC Data Access)
OPC HDA(英语:OPC Historical Data Access)
OPC UA
智能建筑
1-Wire
BACnet
C-Bus(英语:C-Bus (protocol))
DALI(英语:Digital Addressable Lighting Interface)
DSI(英语:Digital Signal Interface)
DyNet(英语:DyNet)
Factory Instrumentation Protocol(英语:Factory Instrumentation Protocol)
KNX(英语:KNX (standard))
LonTalk
Modbus
oBIX(英语:oBIX)
VSCP(英语:Very Simple Control Protocol)
X10
xAP(英语:XAP Home Automation protocol)
xPL(英语:XPL Protocol)
ZigBee
电力系统(英语:Power-system automation)
IEC 60870-5-103
IEC 60870-5(英语:IEC 60870-5)
IEC 60870-6(英语:IEC 60870-6)
DNP3(英语:DNP3)
Factory Instrumentation Protocol(英语:Factory Instrumentation Protocol)
IEC 61850(英语:IEC 61850)
IEC 62351(英语:IEC 62351)
Modbus
Profibus
自动抄表
ANSI C12.18
IEC 61107
DLMS/IEC 62056
M-Bus(英语:Meter-Bus)
Modbus
ZigBee
车用网络(英语:Vehicle bus)
AFDX
ARINC 429(英语:ARINC 429)
CAN
ARINC 825(英语:ARINC 825)
SAE J1939(英语:SAE J1939)
NMEA 2000(英语:NMEA 2000)
FMS
FlexRay(英语:FlexRay)
IEBus(英语:IEBus)
J1587
J1708
KWP2000
UDS
LIN
MOST
VAN(英语:Vehicle Area Network)
取自“https://zh.wikipedia.org/w/index.php?title=EtherCAT&oldid=78676139”
分类:工业以太网现场总线工业自动化隐藏分类:引文格式1错误:章节参数被忽略含有缺少标题的引用的页面
本页面最后修订于2023年8月26日 (星期六) 22:26。
本站的全部文字在知识共享 署名-相同方式共享 4.0协议之条款下提供,附加条款亦可能应用。(请参阅使用条款)
Wikipedia®和维基百科标志是维基媒体基金会的注册商标;维基™是维基媒体基金会的商标。
维基媒体基金会是按美国国内税收法501(c)(3)登记的非营利慈善机构。
隐私政策
关于维基百科
免责声明
行为准则
开发者
统计
Cookie声明
手机版视图
开关有限宽度模式
基于STM32的EtherCAT从站IO讲解_ethercat主站和从站的区别-CSDN博客
>基于STM32的EtherCAT从站IO讲解_ethercat主站和从站的区别-CSDN博客
基于STM32的EtherCAT从站IO讲解
最新推荐文章于 2024-01-05 16:53:58 发布
AUTO_WANG
最新推荐文章于 2024-01-05 16:53:58 发布
阅读量1.2w
收藏
149
点赞数
26
分类专栏:
运动控制算法
C语言
文章标签:
ethercat
物联网
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_40639467/article/details/113775361
版权
C语言
同时被 2 个专栏收录
7 篇文章
7 订阅
订阅专栏
运动控制算法
6 篇文章
23 订阅
订阅专栏
特别说明:
1、这是一个大佬的tao店:1.0 ha:/₴sklPcDGhJOy₤(我是买他的开发板的)
2、源代码设涉及版权问题,所以博客将不提供源码,请大家谅解
3、欢迎大家加我wx:wxk101633 备注:博客 。发布此博客时,正在春节,写得不够好,请大家交流反馈。感谢!!
///
一、基础讲解:
1、EtherCAT从站与EtherCAT主站最大的不同在于:主站完全准寻IP协议的7层网络结构,而从站的物理链路层与主站不同,物理链路层的数据报文格式由倍福公司规定。
2、通常情况下,我们不能使用普通的网卡芯片作为从站的物理链路层;可以使用ET1100、LAN9252、AX58100等协议芯片来实现。
3、这个博客里,我使用的是AX58100芯片,用STM32作为实现应用层的CPU;实现一个16进16出的数字量IO从站。
///
二、从站设备描述文件XML
1、XML文件基础介绍
XML文件是从站设备描述文件,被烧写在从站协议芯片可读写的EEPROM中;AX58100上电后,会从EEPROM中加载相关的配置选项,通过SPI通信与CPU交互,初始化CPU相关资料并初始化通信。
主站则需要根据从站的XML描述文件,发送PDO或SDO数据报文请求读写从站的寄存器。
2、XML文件结构介绍
整体框架如图:
这里重点讲解EtherCATInfo这一栏;Vendor包含设备供应商的描述,Descriptions包含所有设备资源描述,是最重要的地方。
打开Verdor,我们可以通过修改ImageData节点的数据,来修改设备挂载到主站下后的形象:
打开数据节点Descriptions,这里是我们修改自己的数据资源主要地区:
到这里,我将通过具体的例子来讲解如何改写XML文件:(如果不这样,很难描述清楚)
第一步:修改设备挂载后的名字 打开Descriptions-->Devices-->Devices-->Type-->Text,这里修改的是,主站设备挂载该从站IO后的默认实例名称;打开Descriptions-->Devices-->Devices-->Name,将内容修改为设备的名称。 / 第二步:配置各种通信超时时间(通常保持默认,后期主站挂载从站时可以通过主站来调整) 打开Descriptions -->Devices-->Device-->Info / 第三步:开始创建16路IO映射变量区(重要环节) 1、首先,需要想好实际要映射的数据PDO;例如我们要映射16路的数字量输入(Tx)和16路的数字量输出(Rx)。 2、先讲解一下,EtherCAT协议规范的PDO数据映射关系: 3、注意:AX58100等协议芯片中,数据寄存器的地址是按16位(字)单位偏置的,所以在定义PDO数据报文时,每个PDO报文必须至少传递一个字的数据长度,不足的需要补齐!! 4、现在,我们先修改或添加对应PDO的数据类型(如果是DINT INT等标准数据类型,则必须是EtherCAT协议允许的才可以):Descriptions-->Devices-->Device-->Profile-->Dictionary-->DataTypes-->DataType 5、类型定义好了,接下来修改对应的PDO报文申明:Descriptions-->Devices-->Device-->Profile-->Dictionary-->Objects-->Object 6、申明好PDO数据报文后,接下来我们需要修改SM同步数据通道,将数据映射到父级,协议芯片将从这里开始逐级索引数据报文:Descriptions-->Devices-->Device-->sm、Rxpdo、Txpdo(协议芯片从这里开始加载数据到内核,并从报文中读取数据到内核) 7、修改SM内容后,你会发现,父级PDO x1601(Rxpdo)和x1a00 PDO节点的映射内容也发生了改变;所以这些父级节点对应的数据类型与PDO申明也需要修改:(父节点PDO的每个成员是子PDO节点的寄存器地址,32位数据) // 第四步:将修改好的XML文件通过twcat软件烧写到协议芯片的EEPROM中。
三、STM32应用层代码的修改
实际上,单纯修改XML文件只是可以让协议芯片在于主站交互数据报文时,有一个依据而已,实际需要交互的数据需要有从站的CPU和外设提供,通过SPI与协议芯片交互。所以,我们还需要再STM32程序内驱动对应的硬件设备,并实现spi数据读写交互。
这里只讲解需要修改的部分: 第一步:在源代码的el9800app.h中,添加数据节点结构体系列描述:(有四个东西需要创建或修改) 第二步:将新创建的PDO节点,加入应用PDO节点管理数据(在源代码的el9800app.h中) 第三步:在源代码的el9800app.h中,对应修改1601映射数据管理对象的四个东西 第四步:在源代码的el9800app.h中,修改1c12PDO对象,因为1600~1602是映射到1c12上,最终完成主从数据交换的 第五步:在el9800appl.c文件中,按照需求为数据节点PDO分配内存空间,用于交互数据 第六步:在el9800appl.c文件中,将PDO数据缓存区内容赋值给具体的硬件接口,实现硬件操作 第七步:硬件驱动初始化,否则数据也无法在硬件上体现出来
优惠劵
AUTO_WANG
关注
关注
26
点赞
踩
149
收藏
觉得还不错?
一键收藏
知道了
8
评论
基于STM32的EtherCAT从站IO讲解
EtherCAT IO从站 工业通信
复制链接
扫一扫
专栏目录
EtherCAT从站XML文件组成元素详解(4):设备配置文件编号
kevin1499的博客
11-29
1417
根据EtherCAT的xml组成规范,结合DM3E-556、GL20-RTU-ECT从站XML文件,详细分析了EtherCAT从站xml文件的设备配置文件编号信息组成。
十四.EtherCAT开发之ST MCU STM32F407ZGt6+ AX58100的开发FOE应用
aiot_bigbear的专栏,关注我获取最新技术文章信息与海量资源~
06-21
2469
STM32F407ZGt6与AX58100是 SPI连接,工作在SPI模式。FoE(File Access over EtherCAT)可实现EtherCAT节点之间的文件传输。
8 条评论
您还未登录,请先
登录
后发表或查看评论
lan9252与stm32的EtherCAT从站实现,ethercat主站代码stm32,C,C++
09-10
实现基于 LAN9252
ethercat从站stm32程序和使用文档,实现了IO、AD、DA功能。
07-20
2018年暑期自己搞的项目的一部分,包括基于stm32f407的ethercat从站程序以及配套的XML文件。实现了IO、AD、DA功能。在别人已经实现的ethercat从站功能上,我根据智昂的从站板子添加了AD、DA功能。参考了别人的提供的资料,算是踩在了巨人的肩膀上吧。
EtherCat 从站控制芯片
最新发布
weixin_46024116的博客
01-05
973
EtherCat 从站控制芯片简称ESC,是实现EtherCat数据链路层协议的专用芯片,用作处理EtherCat数据帧,并为从站控制装置提供数据接口,简单说就是一般我们的MCU不支持EtherCat(当然也有支持的,支持的就不需要ESC),ESC就是个转换器,一般和MCU选择串行(SPI)的方式来通信。ESC存储空间:前面讲到ESC具有64K字节的DPRAM,前4K(0x0000–0x0FFF)字节的寄存器空间。
STM32 EtherCATEtherCAT通信,量产伺服驱动器采用STM32作为主控支持ethercat从站IO,模拟输
07-04
STM32 EtherCAT
EtherCAT通信,量产伺服驱动器
采用STM32作为主控
支持ethercat从站IO,模拟输入
已实现底层驱动,中断处理,数据通信
包括原理图,源代码,说明文档
已移植量产使用,具有极高的参考价值
我会提取出相关的知识点和领域范围,并为你提供一些相关的基础知识。
这里介绍了一个使用STM32作为主控的EtherCAT通信系统,用于量产伺服驱动器。该系统支持EtherCAT从站IO和模拟输入,并已经实现了底层驱动、中断处理和数据通信。它包括了原理图、源代码和说明文档,并已经成功移植并应用于量产中,具有极高的参考价值。
相关的知识点和领域范围包括:
STM32:STM32是一系列由STMicroelectronics开发的32位ARM Cortex-M微控制器。它们广泛应用于各种嵌入式系统中,提供了丰富的外设和功能。
EtherCAT通信:EtherCAT(Ethernet for Control Automation Technology)是一种实时以太网通信协议,用于工业自动化领域。它具有高性能、低延迟和可扩展性等特点,适用于实时控制和数据传
STM32F303+LAN9252的EtherCAT实现IO、AD、DA
热门推荐
Taqingjie的博客
10-29
1万+
STM32F303+LAN9252的EtherCAT下位机设计
从去年年末接触EtherCAT总线以来,由于其他一些工作原因,前期设计的基于STM32F303+LAN9252开发板一直未能跑通,仅实现了LAN9252这部分电路与Twincat的通讯,MCU与LAN9252未能成功通信交互数据。近段时间又返回重新开始了这部分内容。终于是将下位机调试成功。之前在选择MCU时考虑很多,最后在网上找到了这样一份答案,选取EtherCAT主控单片机时应选择FLASH在25KB、RAM在32KB以上的MCU,考虑成本
基于STM32的伺服总线EtherCAT主站设计——SOEM方案
weixin_48501028的博客
04-16
7553
本文介绍在正点原子的STM32H743开发板上,使用SOEM方案实现EtherCAT主站通讯,本文记录从零基础学习路线,从入门到移植成功控制电机转动。
EtherCat主站与从站简介
JXES智能生态系统
03-29
3717
ETG.1000 系列文件是在 EtherCAT Technology group 范围内对 EtherCAT Technology 详细说明。
(转载)STM32与LAN9252构建EtherCAT从站
xiahailong90的博客
02-27
9507
EtherCAT Technology Group | 联系方式。使用SSC,可以快速地构建EtherCAT从站代码,保证从站协议栈与最新的EtherCAT协议相匹配,同时还可以生成从站设备描述文件,这是一份XML文件,需要放在TwinCAT安装路径下的目录下,在使用TwinCAT对设备进行组态时需要使用。是EtherCAT从站设计过程中很重要的一个文件,关于从站设备传输多少数据,是否启用分布式时钟,PHY(LAN9252)与MCU之间如何通信等等重要数据都在这个描述文件中定义。
基于STM32构建EtherCAT主站(SOEM方案)2
cln512的博客
12-22
1万+
基于stm32构建ethercat主站
基于stm32构建EtherCAT主站,采用了开源的soem方案
12-05
基于stm32构建EtherCAT主站,将soem方案移植到了stm32上。基本功能测试正常,可以驱动一部分的伺服电机,但也存在一些bug。整体移植方式应该是正确的,具体移植方式将写于CSDN博客中。
基于AM4377的EtherCAT主站控制stm32从站的小程序
07-23
基于AM4377的EtherCAT主站控制stm32从站小程序。一个igh小例程,用于控制EtherCAT从站。主站控制3个倍福EL2008从站每秒钟实现1次亮灭,每秒读取stm32从站的AD数据并在串口中打印出来,stm32从站的8路输出由8路输入...
【EtherCAT实践篇】三、EtherCAT从站软件设计-IO口操作
zhandouhu的博客
01-27
8872
【EtherCAT分析】二、EtherCAT从站驱动程序分析已经给出了EtherCAT从站软件设计的基本框架,下面结合设计的EtherCAT从站硬件板子进行如程序设计。
1、STM32底层引脚及功能配置
主要完成RCC时钟,GPIO口、AD采样、SPI接口等配置。
1.1 GPIO口配置:16路拨码开关输入,16路LED输出
void GPIO_init(void)
{
...
STM32H743 SOEM EtherCAT 基于STM32H743芯片和SOEM的EtherCAT主站介绍
2301_78835236的博客
06-22
825
SOEM的版本1.3.1是指其协议栈的特定版本,每个版本可能会有一些改进和修复。EtherCAT通信协议:我可以解释EtherCAT协议的工作原理、优势和应用场景,并介绍EtherCAT主站和从站的概念。如果您对STM32微控制器系列感兴趣,我可以为您提供更详细的信息,例如不同系列和型号的特点、应用案例和开发方法。如果您对实时以太网通信感兴趣,我可以为您详细介绍实时以太网通信的基本原理、常见协议和在工业自动化中的应用。实时以太网通信:我可以讲解实时以太网通信的基本原理、常见协议和在工业自动化中的应用。
工控协议解读之EtherCAT协议硬核分析(转自知乎“智能制造之家“)
qq_43599327的博客
09-07
7036
EtherCAT协议
EtherCat概述
weixin_46024116的博客
12-12
976
所有的状态改变都由主站发起,主站向从站发送状态控制命令请求新的状态,从站响应此命令,执行所请求的状态转换,并将结果写入从站状态指示变量。段内寻址有设备寻址和逻辑寻址,设备寻址针对某个从站进行读写,逻辑寻址面向过程数据,可以实现多播,同一个子报文可以读写多个从站设备。对于运行在同步模式的从站,主站应该检查相应的过程数据帧的周期时间,保证大于从站支持的最小周期时间。参考时钟和从时钟: EtherCAT协议规定主站连接的第一个具有分布时钟功能的从站作为参考时钟,其它从站的时钟称为从时钟。
基于STM32F429 + ECM-XFU搭建运动控制平台,实现EtherCAT通讯
weixin_48501028的博客
08-24
1173
笔者最近项目是要设计一款运动控制器,主要是实现EtherCAT通讯,准备使用STM32F429作为主控芯片,通过SPI控制ECM-XFU芯片,最终要实现32轴的EtherCAT控制。本文记录笔者的制作过程,本人才疏学浅,如有错误还请指正。
stm32 ethercat从站电路
11-14
STM32 EtherCAT是一种使用STM32微控制器实现的EtherCAT(以太网控制自动化技术)从站电路。EtherCAT是一种高性能实时机制,用于工业自动化系统中实现高速、低延迟的实时数据通信。
STM32 EtherCAT从站电路可以使用STM32微控制器作为主要的处理和通信芯片。STM32微控制器拥有强大的计算能力和丰富的外设资源,可以与EtherCAT通信的物理层芯片进行连接。
在STM32 EtherCAT从站电路中,主要包含了STM32微控制器、EtherCAT通信的物理层芯片、以及连接这两者的接口电路。STM32微控制器负责实时处理和响应来自EtherCAT主站的命令和数据,同时利用物理层芯片与其他从站进行高速、低延迟的通信。
由于STM32微控制器的强大功能和丰富的外设资源,STM32 EtherCAT从站电路可以实现多种不同的功能,例如数据采集、信号处理、运动控制等。同时,STM32微控制器的低功耗特性也能够满足一些对功耗要求较高的应用场景。
总结来说,STM32 EtherCAT从站电路是一种基于STM32微控制器的实现EtherCAT通信协议的从站电路。它能够提供高性能、低延迟的实时数据通信,适用于工业自动化系统中的各种应用场景。
“相关推荐”对你有帮助么?
非常没帮助
没帮助
一般
有帮助
非常有帮助
提交
AUTO_WANG
CSDN认证博客专家
CSDN认证企业博客
码龄6年
企业员工
29
原创
29万+
周排名
27万+
总排名
14万+
访问
等级
1125
积分
274
粉丝
179
获赞
47
评论
1232
收藏
私信
关注
热门文章
02 CODESYS应用基础之ST语言语法基础
39597
MODBUS通讯的C语言实现与简单讲解
22102
01 CODESYS应用基础知识之数据类型
21029
基于STM32的EtherCAT从站IO讲解
12496
ProfiBus、ProfiNet现场总线通信协议讲解与C语言实现
8236
分类专栏
FreeRTOS
2篇
Linux系统
10篇
运动控制算法
6篇
Linux系统移植
7篇
CODESYS
2篇
C语言
7篇
Qt
2篇
最新评论
Linux下的FrameBuffer驱动框架
qq_35345783:
正点原子的?
基于STM32的EtherCAT从站IO讲解
AUTO_WANG:
灰色代表条件编译,有可能是编辑器显示的问题,最好是再见dbug一下
02 CODESYS应用基础之ST语言语法基础
2201_75339673:
1、条件判断语句(IF....END IF)
举个例子上的图片
:=FALSE与:=0
有什么区别啊
FALSE不也是等于0吗?
ProfiBus、ProfiNet现场总线通信协议讲解与C语言实现
anglelaxinxin:
您好,请问您弄清楚这个问题了嘛?可以进一步交流吗
02 CODESYS应用基础之ST语言语法基础
a_cizhi:
功能块输出
您愿意向朋友推荐“博客详情页”吗?
强烈不推荐
不推荐
一般般
推荐
强烈推荐
提交
最新文章
FreeRTOS进阶学习
FreeRTOS基础学习
Linux下的FrameBuffer驱动框架
2023年3篇
2022年11篇
2021年3篇
2020年10篇
2019年2篇
目录
目录
分类专栏
FreeRTOS
2篇
Linux系统
10篇
运动控制算法
6篇
Linux系统移植
7篇
CODESYS
2篇
C语言
7篇
Qt
2篇
目录
评论 8
被折叠的 条评论
为什么被折叠?
到【灌水乐园】发言
查看更多评论
添加红包
祝福语
请填写红包祝福语或标题
红包数量
个
红包个数最小为10个
红包总金额
元
红包金额最低5元
余额支付
当前余额3.43元
前往充值 >
需支付:10.00元
取消
确定
下一步
知道了
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝
规则
hope_wisdom 发出的红包
实付元
使用余额支付
点击重新获取
扫码支付
钱包余额
0
抵扣说明:
1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。 2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。
余额充值
ethercat soe该怎样开发? - 知乎
ethercat soe该怎样开发? - 知乎首页知乎知学堂发现等你来答切换模式登录/注册EtherCAT 总线驱动器ethercat soe该怎样开发?最近公司要做ethercat从站。开发soe时,我发现倍福公司提供的ethercat从站代码生成工具并没有生成soe协议栈的内容。其中包含的ecats…显示全部 关注者1被浏览1,343关注问题写回答邀请回答好问题添加评论分享2 个回答默认排序艾克斯关注软件开发和技术创新,不断探索新的编程语言、开发框架和方案 关注EtherCAT(Ethernet for Control Automation Technology)是一种快速实时以太网通信协议,用于工控领域的实时控制和数据交换。SOE(Servo on the EtherCAT)是EtherCAT中的服务,用于实现伺服驱动器(Servo Drive)与EtherCAT主控制器之间的通信。来晚了,不知道你问题解决没?根据题主描述的问题来看,倍福(Beckhoff)公司提供的EtherCAT从站代码生成工具并没有生成完整的SOE协议栈内容,那可能是因为该代码生成工具只提供了一些基本框架,而没有实现具体的SOE协议功能。在这种情况下,你可能需要手动实现SOE协议栈的相关功能,包括SOE协议的解析、封装和交互等。这涉及到对EtherCAT协议的深入理解,并且需要根据规范和文档,编写适合你的硬件设备和应用场景的SOE功能代码。以下是一些参考,希望对你有帮助SOE协议栈内容相关测试用例:public class SOEProtocolStackTest {
public static void main(String[] args) {
byte[] frame = {0x01, 0x02, 0x03, 0x04}; // 测试数据帧
// 解析SOE数据帧,提取信息
SOEFrameParser frameParser = new SOEFrameParser();
SOEFrameData frameData = frameParser.parse(frame);
// 打印事件类型和时间
System.out.println("Event type: " + frameData.getEventType());
System.out.println("Timestamp: " + frameData.getTimestamp());
// 根据事件类型进行相应的处理
SOEEventManager eventManager = new SOEEventManager();
String result = eventManager.handleEvent(frameData.getEventType());
// 打印处理结果
System.out.println("Handling result: " + result);
}
}
class SOEFrameData {
private int eventType;
private long timestamp;
public SOEFrameData(int eventType, long timestamp) {
this.eventType = eventType;
this.timestamp = timestamp;
}
public int getEventType() {
return eventType;
}
public long getTimestamp() {
return timestamp;
}
}
class SOEFrameParser {
public SOEFrameData parse(byte[] frame) {
// 解析SOE数据帧,提取信息
int eventType = frame[0]; // 假设事件类型在第一个字节
long timestamp = ((frame[3] << 24) & 0xFF000000) | ((frame[2] << 16) & 0x00FF0000)
| ((frame[1] << 8) & 0x0000FF00) | (frame[0] & 0x000000FF); // 假设时间戳在后面四个字节
return new SOEFrameData(eventType, timestamp);
}
}
class SOEEventManager {
public String handleEvent(int eventType) {
// 根据事件类型进行相应的处理
switch (eventType) {
case 1:
return "Handling event type 1.";
case 2:
return "Handling event type 2.";
default:
return "Unknown event type.";
}
}
}
<该测试用例由IDE编程插件【TalkX】生成提供>不确定题主对该内容的掌握程度是多少?所以我尽量梳理出一些内容,希望对你有帮助。编写SOE(Sequence of Events)协议栈的内容:1. 定义协议规范:根据SOE协议的需求和设计目标,明确协议的数据格式、消息结构、报头、字段含义等。确定协议规范是编写协议栈的基础。 - 确定数据帧的格式:包括报头、字段和负载数据的排列和含义。eg:报头可以包括版本号、数据帧长度、事件类型等字段。 - 根据需求定义事件格式:事件类型、时间戳、事件数据等。eg:具体的事件类型根据具体的应用场景来决定,可以是设备的状态变化、告警事件等。2. 实现数据帧解析:编写代码来解析接收到的SOE数据帧,提取出其中的信息。根据协议规范来解析数据帧的报头、字段和负载数据,将数据转换为可处理的格式。 - 根据协议规范,编写代码来解析接收到的SOE数据帧。 根据定义的数据帧格式,读取报头信息,包括版本号、数据帧长度等。 按照协议规定的字段顺序,读取和解析报文中的字段信息。 提取根据协议规范定义的事件类型和时间戳。3. 设计事件序列管理:处理接收到的事件并维护正确的事件顺序。根据事件的时间戳或序列号,将事件按照正确的顺序排序,确保在处理事件时按照正确的顺序进行。 - 接收到的事件根据时间戳或序列号进行排序,以确保按照正确的顺序处理事件。 - 维护事件序列,可以使用队列或其他数据结构来存储和管理事件,以确保按照事件发生的顺序进行处理。4. 实现事件处理逻辑:针对不同类型的事件,编写逻辑来处理每一种事件。根据协议规范中定义的事件类型,实现相应的处理逻辑,如记录事件信息、触发相关操作、发送响应等。 - 根据协议规范中定义的事件类型,编写逻辑来处理每一种事件。 - 根据事件类型,对事件进行分类处理,并触发相应的操作或响应。 - 根据具体的应用场景,可以实现事件的记录、存储、转发等操作。5. 管理状态信息:根据接收到的事件更新设备或系统的状态信息,并进行适当的状态管理操作。维护设备的当前状态,以便与其他部分共享和使用。 - 根据接收到的事件更新设备或系统的状态信息,并进行适当的状态管理操作。 - 根据业务需求,维护设备的当前状态,以供其他模块或系统使用。6. 实现通信协议支持:根据SOE协议规范中定义的通信方式,实现与其他设备或系统的通信。根据协议规范中定义的协议栈层次结构,在协议栈中集成底层通信协议(如TCP/IP、UDP等),确保协议栈与其他设备之间的正确数据交换。Ethercat SOE开发的步骤和注意事项(GPT生成 仅参考逻辑):1. 研究SOE协议规范:详细了解EtherCAT SOE协议的规范和定义,包括命令、数据结构、帧格式等。这将帮助你理解SOE协议的工作原理和实现要求。2. 基于代码生成工具的框架:如果倍福提供的代码生成工具生成了一些空函数和宏,你可以使用这些框架作为起点,并在其中实现SOE协议栈的具体功能。3. SOE协议解析与封装:根据SOE协议规范,编写代码来解析主站发送的SOE帧,并根据需要封装应答。这涉及到数据的解析、校验和生成合适的应答帧。4. 与驱动器交互:根据SOE协议规定的命令和数据交互方式,在代码中实现与伺服驱动器的通信。这包括发送和接收SOE帧,以及解析和处理驱动器的响应。5. 测试和调试:通过测试和调试确保SOE协议栈的功能正常。这包括验证功能的正确性、数据的准确性和与主站的稳定通信。这是stackoverflow平台上关于ethercat soe的相关搜索结果(说不定可以找到一些解决问题的线索)当涉及到SOE协议栈的开源项目时,目前可能没有一个特定的项目专门针对SOE协议进行开发。不过你可以参考一些开源项目,很有可能提供了类似的功能或相关的协议栈实现:1. Eclipse Tahu:基于Eclipse IoT项目的遗留设备通信协议栈,提供了对多种遗留设备协议的支持。 官方网址:2. Paho MQTT:开源的、轻量级的MQTT协议实现,可用于设备间的消息传递和通信。 官方网址:3. Eclipse Wakaama (LWM2M):基于Eclipse IoT项目的Lightweight M2M (LWM2M) 协议实现,用于物联网设备管理和通信。 官方网址:4. Contiki-NG:一个开源的嵌入式操作系统,提供了一系列网络协议栈和通信协议的支持,适用于物联网设备。 官方网址:发布于 2023-08-30 10:39赞同 1添加评论分享收藏喜欢收起xmzhangfather the great | 这不搁这儿quo人的么 关注(⊙o⊙)… 不知道,不过邀请了还是回答下,首先你需要对SOE协议有一定的了解。先阅读文档以及相关资料,了解SOE协议的定义、消息结构和通信流程。弄清楚这些有助于你理解需要实现的功能和接口。另外你提到的包括ecatsoe.c和ecatsoe.h文件搞不定,可以逐行查看其中的函数、宏和数据结构,以了解它们的作用、参数和返回值。如何开始当然就是从手头开始啦,别放弃,弄清楚一点一点来就好。发布于 2023-08-29 09:25赞同1 条评论分享收藏喜欢收起
EtherCAT (学习笔记)-CSDN博客
>EtherCAT (学习笔记)-CSDN博客
EtherCAT (学习笔记)
最新推荐文章于 2024-01-16 16:03:36 发布
pwl999
最新推荐文章于 2024-01-16 16:03:36 发布
阅读量6.7w
收藏
1.3k
点赞数
209
分类专栏:
Motion Control
文章标签:
ethercat
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/pwl999/article/details/109397700
版权
Motion Control
专栏收录该内容
3 篇文章
75 订阅
订阅专栏
文章目录
1. 简介1.1 运动控制1.2 实时以太网1.3 EtherCAT
2. EtherCAT原理介绍2.1 实时性2.2 端口管理2.3 EtherCAT网络拓扑2.4 EtherCAT网络协议栈2.5 EtherCAT数据帧格式2.6 EtherCAT设备寻址方式2.7 分布式时钟(Distribute Clock)2.8 应用层(Application Layer)2.9 设备配置(Device Profile)2.10 主站设计2.11 从站设计
3. 应用层(Application Layer)3.13.2 EtherCAT Slave Implementation (从站实现)
4. 应用实例4.1 主站操作系统(RTAI)4.2 主站EtherCAT程序(IGH)4.3 主站应用开发(LinuxCNC)4.4 ET12004.5 从站程序设计4.6 实验测试
5. 工具5.1 TwinCAT5.2 LinuxCNC5.3 开源的EtherCAT Master
参考资料
1. 简介
1.1 运动控制
运动控制系统处理机械系统中一个或多个坐标上的运动以及运动之间的协调,实现精确的位置控制、速度和加速度控制、转矩和力的控制等。
单轴的运动控制系统可分为开环、半闭环和闭环伺服系统。
多轴运动控制系统可以分成点位控制、连续轨迹控制和同步控制。
典型的运动控制系统,从结构上看,包括上位机控制窗口、运动控制器、驱动器、电机以及测量反馈系统等几个部分组成:
1.2 实时以太网
实时以太网(RTE, Real Time Ethernet)是常规以太网技术的延伸,以便满足工业控制领域的实时性数据通信要求。目前,国际上有多种实时工业以太网协议,根据不同的实时性和成本的要求使用不同的原理,大致可以分为以下三类:
(1)基于TCP/IP实现的工业以太网仍使用TCP/IP协议栈,通过上层合理的控制来解决通信过程中的不确定因素。这种方式具有较高的传输速率,适应于大量数据通信,更适合作为网关和交换设备的应用,不能实现很好的实时性。常用的通信控制方法有:合理调度,减少冲突的概率;定义帧数据的优先级,为实时数据分配最高优先级;使用交换式以太网等。使用这种方式的典型协议有Modbus/TCP和Ethernet/IP等。(2)基于以太网实现的工业以太网仍然使用标准的、未修改的以太网通信硬件,但是不适用TCP/IP来传输数据。它使用特定的报文进行传输。TCP/IP协议栈能使用时间控制层分发一定的时间片来利用网络资源。该类协议主要有Ethernet Powerlink, EPA C Ethernet for Plant Automation ), PROFINET IRT等。通过这种方式可以实现较好的实时性。(3)通过修改以太网协议实现的工业以太网,实现应答时间小于lms的硬实时,从站使用特定的硬件实现。由实时MAC控制实时通道内的通信,从根本上避免报文间的冲突。非实时数据依然能在通道中按原协议通信。典型协议有德国倍福的EtherCAT、西门子的PROFINET IRT等。
1.3 EtherCAT
德国BECKHOFF自动化公司于2003年开发出的EtherCAT实时以太网技术突破了其他以太网解决方案的系统限制:通过该项技术,无需接受以太网数据包,将之解码,然后再将过程数据复制到各个设备。
2. EtherCAT原理介绍
EtherCAT从站设备在报文经过其节点时读取相应的数据报文,同样输入数据也是在报文经过时插入到报文中。整个过程报文只有几纳秒的时间延迟,实时性获得极大提高
EtherCAT作为一种工业以太网总线,充分利用了以太网的全双工特性。使用主从通信模式,主站发送报文给从站,从站从中读取数据或将数据插入至从站。
主站可使用标准网卡实现,从站选用特定的EtherCAT从站控制器ESC(EtherCAT Slave Controller)或者FPGA实现,
主要完成通信和控制应用两部分功能,EtherCAT物理层选用标准以太网物理层器件。
从站能将收到的报文直接处理,并读取或插入有关的数据,再将报文发送给下一个EtherCAT从站。最末尾的EtherCAT从站返回处理完全的报文,然后由第一个从站发送给主站。整个通信过程充运行于全双工模式下,TX线发出的报文又通过RX线返回给主站:
2.1 实时性
数据包刷新时间的计算
数据包中所有从站的 Process Datarocess Datarocess Data rocess Data rocess Data rocess Datarocess Data数据 决定了数据包的长度。
一个Ethernet thernet数据包最小84 字节,不足 84 字节会补齐84 字节。由于EtherCAT Frame中有一些公共开销, 84 字节的数据包最多含18字节的过程数据。考虑到数据包必须经过每个从站两次才能回到主站,所数据包以固定的波特率100 Mbps在网络上传输两次的时间 这就是它的总线刷新时间 。
1.基于这个原则,以包含 1000路开关量信号的数据包为例,计算过程如下:
过程数据长度:1000/8=125Bytes
数据包长度:84-18+125=191Bytes=191*8 Bit= 1528 Bit
总线刷新时间:(1528Bit/100,000,000 Bps)*2=15.28us * 2 = 30.56us
注意,通常的数字量模块, 都是单纯的输出或者输入模块,而不是混合模块。所以 1000 个数字 量信号, Frame 中就会分配 125 字节。
2.再以包含100个EtherCAT伺服驱动器过程数据的EtherCAT数据包为例,假如每个伺服的过程数据只包括控制字(2字节)、状态字(2字节)、目标位置(4字节)、实际位置(4字节),其总线刷新时间的计算过程如下:
过程数据长度:100*(2+4)=600 Byte。
数据包长度:84-18+600=1266 Byte =671*8 Bit =5328 Bit
总线刷新时间:(5328 Bit/100,000,000 Bps) *2=100.656µs
注意,Frame中只为一个伺服分配了6个字节,这是因为根据Beckhoff公司的控制软件TwinCAT中关于EtherCAT的默认设置是从站的Input和Output使用同一数据段,所以数据包进入伺服驱动器时该数据段存放的是控制字和目标位置,而出来时则存放伺服的状态字和实际位置。
以上两个数据30.56µs和101.28 µs就是EtherCAT官方宣传资料中,刷新1000个数字量需要30µs,刷新100个伺服轴只需要100µs的数据由来。实际上,根据从站的类型、是否包含分布时钟、是否启用时钟同步、时钟同步的参数设置不同,在数据包中有可能还会增加8-12字节用于传输同步时钟值,以及相应的为每个从站增加一个Bit的标记等等,会增加几个微秒的刷新时间,暂且忽略不计。
以上计算只是数据包传输需要的理论时间,实际上,数据包经过每个从站会产生短暂的硬件延时。100M超五类网线接口的从站延时约1µs,而EBus的IO模块类从站延时约0.3µs,在毫秒级以下的控制任务中如果从站数量较多,这个时间也相当可观,计算刷新周期时应该考虑进去。
2.2 端口管理
一个从站控制器最多可以有4个端口,如果一个端口关闭了,控制器主动连接下一个端口。端口可以随着EtherCAT命令主动的打开或者关闭。逻辑端口设置决定了EtherCAT帧的处理和发送顺序。
2.3 EtherCAT网络拓扑
所有数据帧在网络中以一种“逻辑闭环”的方式传播,与网络的硬件拓朴无关,无论它是链式、菊花链、星形还是树形拓朴。
所有数据帧都由Master发出,以事前严格定义的顺序,依次经过网络上的所有从站,走过一个完整的闭环后回到Master 。 所有数据帧通过从站中的 EtherCAT Processing Unit (EtherCAT处理单元)只有 1 次。
线型拓扑:
任意数目的设备成线型连接 最多65535个设备
数据处理链型拓扑 带有分支线的数据处理链型拓扑 树型拓扑: 实时星型拓扑: 冗余线缆
选择冗余电缆可以满足快速增长的系统可靠性需求,以保证设备更换时不会导致网络瘫痪。您可以很经济地增加冗余特性,仅需在主站设备端增加使用一个标准的以太网端口(无需专用网卡或接口),并将单一的电缆从总线型拓扑结构转变为环型拓扑结构即可(见图7)。当设备或电缆发生故障时,也仅需一个周期即可完成切换。因此,即使是针对运动控制要求的应用,电缆出现故障时也不会有任何问题。
EtherCAT也支持热备份的主站冗余。由于在环路中断时EtherCAT从站控制器芯片将立刻自动返回数据帧,一个设备的失败不会导致整个网络的瘫痪。例如,拖链设备可以配置为分支拓扑以防线缆断开。
2.4 EtherCAT网络协议栈
CoE(Can over EtherCAT)
PDO(Process Data Object 过程数据对象)
SDO(Service Data Object 服务数据对象)
PDI(Process Data Interface 过程数据接口)(uC, SSI, I/O)
ESM(EtherCAT State Machine)
ESI(EtherCAT Slave Information) (XML device description)
ENI(EtherCAT Network Information)
CTT(Conformance Test Tool 一致性测试工具)
SM(SyncManagers 同步管理器)
MDP(modular device description 模块化设备描述 )
2.5 EtherCAT数据帧格式
EtherCAT数据直接嵌入在以太网数据帧中进行传输,只是采用了一种特殊的帧类型,该类型为Ox88A4, EtherCAT数据帧结构如图所示:
EtherCAT数据包由数据头和数据实体两部分组成,EtherCAT数据头包含2个字节,每个数据包里面可以只包含一个EtherCAT子报文,也可以包含多个子报文;一个EtherCAT子报文对应着一个从站,因此一个EtherCAT数据包可以操作 多个EtherCAT从站,相应的数据长度在44-1498字节之间,EtherCAT数据帧结构定义: 类型 字段:
EtherCAT子报文结构定义:
地址区 字段
EtherCAT 寻址:
EtherCAT 通信的实现是通过由主站发送至从站的 EtherCAT 数据帧来完成对从站设备内部存储区的读写操作, EtherCAT 报文对 ESC 内部存储区有多种寻址操作方式,从而可以实现多种通信服务。EtherCAT 段内寻址有设备寻址和逻辑寻址两种方式。
设备寻址是面对一个从站进行读写操作。
逻辑寻址是面向过程的数据操作, 实现同一报文读写多个从站设备的多播功能。
具备全部寻址方式的从站称为完整性从站,只具备部分寻址方式的从站则称为基本从站。
命令 字段
不同命令通过信息传输系统最优化对所有存取方法的读写
WKC 字段
Working Counter。如果成功寻址了EtherCAT设备,并且成功执行了读操作,写操作或读/写操作,则工作计数器将递增。 可以为每个数据报分配一个工作计数器值,该值是根据预期报文通过所有设备数来设置的。 通过将工作计数器的预期值与所有设备通过后的实际值进行比较,主站可以检查EtherCAT数据报是否已成功处理。
同步管理器
2.6 EtherCAT设备寻址方式
在EtherCAT的每个子报文中,有32位空间用于对EtherCAT设备进行寻址。寻址方式有四种,分别为:
位置寻址
位置寻址方式是根据从站的连接顺序,即物理位置实现的。在报文头的32bit地址中,前16bit的Position用于存放地址值,Offset用于存放ESC逻辑寄存器或者内存地址。报文每经过一个从站设备,其Position中的地址值加1。当一个从站接收到EtherCAT报文后,如果报文中的地址值为0,则该报文就是这个从站要要接收的报文。
在上图中,如果需要总线上第8个设备响应报文,则主站需要将报文的地址设为0xFFF9,当报文经过第1个从站时,地址为0xFFF9,不等于0,第1个从站不会响应报文,报文地址加1,变为0xFFFA。当报文经过第2个从站时,地址为0XFFFA,不等于0,第2个从站不会响应该报文,报文地址加1,变为0xFFFB。以此类推,当报文到达第8个从站时,此时地址值为0x0000,当前从站将接收报文。
位置寻址(Position Address / Auto Increment Address)只应在启动EtherCAT系统时用于扫描现场总线,以后只能偶尔使用以检测新连接的从站。 如果由热连接或链接问题导致循环暂时关闭,使用位置寻址可能会出现问题。 在这种情况下位置地址被移位,并且,如错误寄存器的值到设备的映射变得不可能,因此不能定位故障链路。
节点寻址
在启动阶段,主站通常采用位置寻址方式对总线上的从站进行寻址,之后采用节点寻址方式。
在报文中,报文头的32bit地址,前16bit的Address用于存放站点地址值,Offset用于存放ESC逻辑寄存器或者内存地址。
在每个从站中站点地址保存在寄存器(0x0010) 中。
顺序寻址时,主站可以对每个从站的站点地址进行设置,也可以直接读取每个从站的的站点地址。
节点寻址方式的优点是,每个从站的地址与其在总线中的位置无关。在添加/删除从站,甚至是改变总线拓扑结构的时候都能对从站进行正确的访问。
上图是节点寻址方式的示意图。8个从站的地址与其在总线中的位置并没有关系。出于直观的目的,4台伺服驱动器的地址被设置为连续的,4个I/O模块的地址被设置为连续的,在实际中并没有这样的要求。
EtherCAT从设备可以有两个配置的站点地址,一个由主站分配(Configured Station Address),另一个存储在SII EEPROM,并且可以由从站应用程序更改(Configured Station Alias address)。
配置站点地址由主站在启动期间分配,并且不能由EtherCAT从站更改。 配置站别名地址存储在SIIEEPROM中,可由EtherCAT从站更改。 配置的站别名必须由主站启用。 如果节点地址(NodeAddress)与配置的站地址或配置的站点别名匹配,将执行相应的命令操作。
逻辑寻址
EtherCAT的第三种寻址方式是逻辑寻址,首先需要了解的是FMMU。
FMMU(Fieldbus Memory Management Units)
FMMU称为总线内存管理单元,它存在与从站芯片ESC中,负责对从站物理地址与主站逻辑地址进行翻译并建立映射关系。主站在总线启动过程中对FMMU进行配置,内容包括:
• 逻辑地址的起始地址
• 数据长度(按跨字节数计算)
• 逻辑地址的起始位
• 逻辑地址的终止位
• 从站物理地址的起始地址
• 从站物理地址的起始位
• 操作类型(只读、只写、读写)
• 使能
在报文中,使用报文头的32bit地址的全部,用来表示大小为4GB的逻辑地址空间。 以上图为例,FMMU将逻辑地址中0x00012345第2位开始的,到0x00012346以第2位终止的区域,与从站物理地址中0x0010第0位开始的区域进行映射。
当从站收到来自主站的报文时,会检查报文中的地址是否与FMMU中的地址相符,如果有,将根据操作类型进行读写操作。
这种寻址方式的优点是,在主站想对每个从站进行访问的时候,只需要对逻辑空间中的地址进行操作,而无须关心该地址对应的从站物理地址,减轻了主站的负担。
所有器件读取和写入相同的逻辑4 GB地址空间(EtherCAT数据报中的32位地址字段)。 从器件使用映射单元(FMMU,现场总线存储器管理单元)将数据从逻辑过程数据映像映射到其本地地址空间。 在启动期间,主器件配置每个从器件的FMMU。 从站使用FMMU的配置信息知道逻辑过程数据映像的哪些部分必须映射到哪个本地地址空间。
逻辑寻址支持逐位映射。 逻辑寻址是一种强大的机制,可以减少过程数据通信的开销,因此通常用于访问过程数据。
当从站设备收到的EtherCAT报文带有逻辑寻址标志位时,从站设备将检查自身是否有相应的FMMU单位地址与之匹配。
总结:EtherCAT使用三种方式对设备进行寻址,在启动过程中,使用顺序寻址方式为从站分配节点地址,然后通过节点寻址方式配置从站寄存器,将逻辑地址与从站物理地址进行映射,之后就可以使用逻辑寻址方式进行过程数据交换了。
Broadcast寻址
每个EtherCAT从站都被寻址。
使用广播寻址。 如果从站的预期是相同的,用于所有从站的初始化和检查所有从站的状态。每个从器件具有一个16位Local地址空间:
地址范围0x0000:0x0FFF专用于EtherCAT寄存器,
地址范围0x1000:0xFFFF用作过程数据RAM
通过EtherCAT数据报的偏移字段寻址,过程数据。
2.7 分布式时钟(Distribute Clock)
通过分布式时钟精确的调整,系统可达到精确的同步。
外部时钟同步IEEE1588 EtherCAT设备同步 定义系统时间
定义一个参考时钟:
一个EtherCAT从站被当做参考时钟使用
参考时钟循环的发布它的时钟
参考时钟根据一个全局参考时钟 IEEE1588
2.8 应用层(Application Layer)
应用层AL(Application Layer) 为用户与网络之间提供接口,应用层在EtherCAT 通信协议层次结构中是与用户联系最紧密最直接的一层,它可以直接与用户进行交互,实现面对具体的应用程序和控制任务等功能, EtherCAT 应用层为各种服务协议与应用程序之间定义了接口, 使其能够满足应用层所要求的各种协议共同工作的需求。
EtherCAT 作为网络通信技术,支持CAN open 协议中的CiA402,以及 SERCOS 协议的应用层( 即 CoE 和SoE)等多种符合行规的设备和协议。
EtherCAT状态机 设备和网络的启动
邮箱接口和协议 设备的存取变量 异步传输
协议:
EOE: Ethernet over EtherCAT
COE: CANopen over EtherCAT
FOE: Filetransfer over EtherCAT
SOE: Servo Drive over EtherCAT
从站信息接口 设备特征和配置信息
EtherCAT状态机
状态机构建于数据链路层 定义EtherCAT从站设备一般信息状态 指定对EtherCAT从站设备启用网络时初始化和错误处理 状态和主从站之间通信关系相一致 从站设备的请求状态和当前状态反应于应用层和应用层注册中
定义了五种状态:
Init // 应用层没有数据交互,主站对数据传输信息注册有同路
Pre-Operational // 应用层上的邮箱通信。没有过程数据交互
Safe-Operational // 应用层上的邮箱通信。过程数据通信,但是仅仅是输入被评估,输出置于Safe状态
Operational // 输入和输出都是有效的
Bootstrap // 定义了固件更新。是可选的,但是在固件必须要更新时推荐选择
// 只能和init进行状态间转换,没有过程数据通信,通过应用层的邮箱进行通信,根据需要的情况对邮箱进行配置,只能使用FoE协议。
从站设备的请求状态和当前状态反应于应用层控制和应用层注册中:
应用层控制(0x0120) 初始化设备状态机的状态转换
应用层状态(0x0130) 设备状态机的实际状态
应用层状态代码(0x0134) 错误原因或者其他状态代码
邮箱传输
交换变量数据的标准方式 邮箱接口是可选择的,但是推荐使用 如果过程数据是可设置的,或者有其他的非周期性服务,必须邮箱通信 全双工能力 从站可以发起一个数据交互 预留两个同步管理器通道: Sync Manager 0(主站到从站),Sync Manager 1(从站到主站) 数据交互的早期阶段,邮箱方式是可利用的(State Pre-Operational) 支持多种协议的能力
邮箱通信协议的类型:
EOE: Ethernet over EtherCAT // 通过EtherCAT传输的标准以太网帧
COE: CANopen over EtherCAT // 访问CANopen对象字典和它的对象,CANopen紧急事件和事件驱动的PDO消息
FOE: Filetransfer over EtherCAT // 下载上传固件和其他的一些文件
SOE: Servo Drive over EtherCAT // 存取伺服轮廓检验(IDN)
从站信息接口
强制从站信息接口SII(Slave Information Interface)由所有能被持久保持的对象组成 信息被存储于一个EEPROM,EtherCAT从站控制器和EEPROM之间有一个SPI接口。
SII包括:
boot设置数据
设备一致性
vender id,产品序列号,修正号,serial no
和CoE对象0x1018里,相同的信息
应用程序信息数据
额外的一些数据
AL Status Code(Application Layer Status Code)
Application Layer: Describes the highest layer of the EtherCAT slave stack which includes the EtherCAT State Machine, error handling, Mailbox protocol handling, slave application.
此可选属性由应用程序控制,并报告由AL的状态控制事例检测到的最后错误或ID值。AL(应用层)状态代码给出从机进入错误状态的原因。 如果错误标志(寄存器0x0130:04)为TRUE,则应提供AL状态代码.
2.9 设备配置(Device Profile)
设备行规描述了设备的应用参数和功能特性,如设备类别相关的机器状态等。现场总线技术已经为I/O设备、驱动、阀等许多设备类别提供了可利用的设备行规。用户非常熟悉这些行规以及相关的参数和工具,因此,EtherCAT无需为这些设备类别重新开发设备行规,而是为现有的设备行规提供了简单的接口。该特性使得用户和设备制造商可以轻松完成从现有的现场总线到EtherCAT技术的转换过程。
EtherCAT实现CANopen (CoE)
CANopen©设备和应用行规广泛用于多种设备类别和应用,如I/O组件、驱动、编码器、比例阀、液压控制器,以及用于塑料或纺织行业的应用行规等。
EtherCAT可以提供与CANopen机制[7]相同的通讯机制,包括对象字典、PDO(过程数据对象)、SDO(服务数据对象),甚至于网络管理。
因此,在已经安装了CANopen的设备中,仅需稍加变动即可轻松实现EtherCAT,绝大部分的CANopen©固件都得以重复利用。并且,可以选择性地扩展对象,以便利用EtherCAT所提供的巨大带宽。
EtherCAT实施伺服驱动 设备行规IEC 61491 (SoE)
SERCOS interface™ 是全球公认的、用于高性能实时运行系统的通讯接口,尤其适用于运动控制的应用场合。
用于伺服驱动和通讯技术的SERCOS™框架属于IEC 61491标准[8] 的范畴。该伺服驱动框架可以轻松地映射到EtherCAT中,嵌入于驱动中的服务通道、全部参数存取以及功能都基于EtherCAT邮箱(参见图12)。在此,关注焦点还是EtherCAT与现有协议的兼容性(IDN的存取值、属性、名称、单位等),以及与数据长度限制相关的扩展性。过程数据,即形式为AT和MDT的SERCOS™数据,都使用EtherCAT从站控制器机制进行传送,其映射与SERCOS映射相似。并且,EtherCAT从站的设备状态也可以非常容易地映射为SERCOS™协议状态。EtherCAT从站状态机可以很容易地映射到SERCOS™协议的通信阶段。
EtherCAT为这种在CNC行业中广泛使用的设备行规提供了先进的实时以太网技术。这种设备行规的优点与EtherCAT分布时钟提供的优点相结合,保证了网络范围内精确时钟同步。可以任意传输位置命令,速度命令或扭矩命令。取决于实现方式,甚至可能继续使用相同的设备配置工具。
EtherCAT实现以太网(EoE)
EtherCAT技术不仅完全兼容以太网,而且在“设计”之初就具备良好的开放性特征——该协议可以在相同的物理层网络中包容其它基于以太网的服务和协议,通常可将其性能损失降到最小。对以太网的设备类型没有限制,设备可通过交换机端口在EtherCAT段内进行连接。以太网帧通过EtherCAT协议开通隧道,这也正是VPN、 PPPoE (DSL) 等因特网应用所普遍采取的方法。EtherCAT网络对以太网设备而言是完全透明的,其实时特性也不会发生畸变(参见图13)。 EtherCAT设备可以包容其它的以太网协议,因此具备标准以太网设备的一切特性。主站的作用与第2层交换机所起的作用一样,可按照编址信息将以太网帧重新定向到相应的设备。因此,集成万维网服务器、电子邮件和FTP 传送等所有的因特网技术都可以在EtherCAT的环境中得以应用。
EtherCAT实现文件读取(FoE)
这种简单的协议与TFTP类似,允许存取设备中的任何数据结构。因此,无论设备是否支持TCP/IP,都有可能将标准化固件上载到设备上。
ADS over EtherCAT (AoE)
ADS over EtherCAT (AoE)是由EtherCAT规范定义的客户端-服务器邮箱协议。尽管CoE协议提供了详尽的描述,但AoE则更适合路由与并行服务的应用:通过网关设备访问子网络,如EtherCAT至CANopen® 或EtherCAT至IO-Link™ 网关设备。AoE使EtherCAT主站应用(如PLC程序)可以访问所属CANopen® 或 IOLink™从站的各个参数。AoE路由机制开销远低于因特网协议(IP)所定义的开销,并且发送方和接收方寻址参数始终包含在AoE报文中。因此,EtherCAT主站和从站端的实施更为精简。AoE也通过EtherCAT自动化协议(EAP)进行非周期通信的标准化,从而为上位机MES系统或主计算机、EtherCAT主站及其从属的现有设备之间提供无缝通信。同时,AoE也提供了从远程诊断工具获取EtherCAT网络诊断信息的标准化方法。
2.10 主站设计
EtherCAT可以在单个以太网帧中最多实现1486字节的分布式过程数据通讯。其它解决方案一般是,主站设备需要在每个网络周期中为各个节点处理、发送和接收帧。
而EtherCAT系统与此不同之处在于,在通常情况下,每周期仅需要一个或两个帧即可完成所有节点的全部通讯,因此,EtherCAT主站不需要专用的通讯处理器。主站功能几乎不会给主机CPU带来任何负担,轻松处理这些任务的同时,还可以处理应用程序,因此EtherCAT无需使用昂贵的专用有源插接卡,只需使用无源的NIC卡或主板集成的以太网MAC设备即可。EtherCAT主站很容易实现,尤其适用于中小规模的控制系统和有明确规定的应用场合。
例如,如果某个单个过程映像的PLC没有超过1486 字节,那么在其周期时间内循环发送这个以太网帧就足够了。因为报文头运行时不会发生变化,所以只需将常数报文头插入到过程映像中,并将结果传送到以太网控制器即可。
EtherCAT映射不是在主站产生,而是在从站产生(外围设备将数据插入所经以太网帧的相应位置),因此,此时过程映像已经完成排序。该特性进一步减轻了主机CPU的负担。可以看到,EtherCAT主站完全在主机CPU中采用软件方式实现,相比之下,传统的慢速现场总线系统通过有源插接卡方可实现主站的方式则要占用更多的资源,甚至服务于DPRAM的有源卡本身也将占用可观的主机资源。
系统配置工具(通过生产商获取)可提供包括相应的标准 XML 格式启动顺序在内的网络和设备参数。
已经在各种实时操作系统上实现了EtherCAT主站,包括但并不限于:eCos, INtime, MICROWARE OS-9,MQX, On Time RTOS-32, Proconos OS, Real-Time Java, RT Kernel, RT-Linux, RTX, RTXC, RTAI Linux,PikeOS, Linux with RT-Preempt, QNX, VxWin + CeWin, VxWorks, Windows CE, Windows XP/XPE with CoDeSys SP RTE, Windows NT/NTE/2000/XP/XPE/Vista with TwinCAT RTE, Windows 7 and XENOMAI Linux. 可以获得开源主站协议栈,作为示例代码或商业软件。也有各种公司提供各种硬件平台上的实施服务。可以在EtherCAT网站上的产品区找到快速增长的供应商信息[1]。
另一种EtherCAT主站的实现方式是使用样本代码,花费不高。软件以源代码形式提供,包括所有的EtherCAT主站功能,甚至还包括EoE(EtherCAT实现以太网)功能(见图15)。开发人员只要把这些应用于Windows环境的代码与目标硬件及所使用的RTOS加以匹配就可以了。该软件代码已经成功应用于多个系统。
2.11 从站设计
从站EtherCAT Processing Unit 总是位于 Port 0 之后其它端口之前,并在数据帧传输的过程中提取和插入数据:
DPRAM: 双端口存储器 Dual-Ported RAM,可以分别从主站及本地微处理器uC访问。访问 ESC 的 Dual-Ported RAM 读出 并/或 写入数据。
从器件具有一个16位Local地址空间:
地址范围0x0000:0x0FFF专用于EtherCAT寄存器,
地址范围0x1000:0xFFFF用作过程数据RAM
SyncManagers 阻止主站和从站微处理器(uC)同时访问 ESC存储区,确保数据的一致性
→ 含周期性数据 (Process Data) 和非周期性数据 (Mailbox)
FMMUs 为Lxx数据报文完成逻辑地址到物理地址的转换
→ 仅对于周期性数据 (Process Data)
从站的SyncManagers 和 FMMU 是由主站在初始化阶段自动配置的,该配置基于每个从站的XML文件和整个网络的设置。
EtherCAT从站设备使用一个价格低廉的从站控制器芯片ESC。从站不需要微处理器就可以实现EtherCAT通信。可以通过I/O接口实现的简单设备可以只由ESC和其下的PHY,变压器和RJ45接头。给从站的过程数据接口是32位的I/O接口。这种从站没有可配置的参数,所以不需要软件或邮箱协议。EtherCAT状态机由ESC处理。ESC的启动信息从EEPROM中读取,它也支持从站的身份识别。
更复杂的可配置从站有使用一个CPU。这个CPU和ESC之间使用8位或16位并行接口或串行SPI接口。要求的CPU性能取决于从站的应用,EtherCAT协议软件在其上运行。EtherCAT协议栈管理EtherCAT状态机和应用层协议,可以实现CoE协议和支持固件下载的FoE协议。EoE协议也可以实施。
从站控制器通常都有一个内部的DPRAM(DUAL PORT RAM),并提供存取这些应用内存的接口范围:
串行SPI(串行外围接口)主要用于数量较小的过程数据设备,如模拟量I/O模块、传感器、编码器和简单驱动等。该接口通常使用8位微控制器,如微型芯片PIC、DSP、Intel 80C51等(见图16)。
8/16位微控制器并行接口与带有DPRAM接口的传统现场总线控制器接口相对应,尤其适用于数据量较大的复杂设备。通常情况下,微控制器使用的接口包括Infineon 80C16x、Intel 80x86、Hitachi SH1、ST10、ARM和TI TMS320等系列(见图16)。
32位并行I/O接口不仅可以连接多达32位数字输入/输出,而且也适用于简单的传感器或执行器的32位数据操作。这类设备无需主机CPU(见图17)。
PDO(过程数据对象)、SDO(服务数据对象)
报文通过从站控制器时,从站读取出相关命令并进行对应处理,数据处理通过硬件完成,延间约为100-_500ns,通信性能独立于MCU的响应时间。每个ESC最大有容量为64KB的可用的内存编址,能进行连续或同步的读写。多个EtherCAT命令数据可以被嵌入到一个以太网报文中,每个数据对应独立的设备或内存区。
EtherCAT极大提高了以太网的性能,比如操作1000个I/O信号的时间约为30微秒。单个报文至多容纳1486字节的过程数据,和12000位I/O信号相当,更新所需时间约为300微秒。控制100个伺服单元的时间约为100微秒。
在基于PC的主站中,一般使用网络接口卡NIC(Network Interface Card)其中的网卡芯片集成了以太网通信控制器和物理层数据收发器。但是在嵌入式主站中,通信控制器通常集成在微处理器中。
EtherCAT从站设备同时实现应用控制和数据通信两部分功能,其组成如图所示,由四部分组成:从站控制微处理器、EtherCAT从站控制器ESC芯片、物理层器件和其他应用层器件。
EtherCAT报文由从站控制器来处理,使用双端口存储区完成主从站间的数据交换。每个从站ESC在环路上按各自的顺序移位读写数据。当数据帧经过从站时,ESC从中读取发送给自己的命令数据并放到内部存储区,插入的数据又被从内部 存储区写到子报文中。
从站控制微处理器主要负责处理EtherCAT通信和完成控制任务。微处理器从ESC获取控制数据实现设备控制功能,并采样设备的反馈数据写入ESC。从站控制微处理器的选型根据设备控制任务,可以使用ARM或DSP; 8位、16位或32位的处理器。EtherCAT从站采用MII接口模式时,需要使用标准以太网物理层器件:物理层芯片PHY,隔离变压器等。采用EBUS接口时不需要任何其他芯片。
3. 应用层(Application Layer)
3.1
3.2 EtherCAT Slave Implementation (从站实现)
DPRAM (双端口存储器)size and number of SyncManagers(同步管理 )
The DPRAM is used for exchange of cyclic and acyclic data(循环和非循环的数据交换) via the EtherCAT network. SyncManagers ensure data consistency(保证数据的一致性) within the DPRAM.
Each ESC has 4kByte of registers (addresses 0x0000 to 0x0FFF) which are reserved for (EtherCAT and PDI communication) configuration settings(配置设置 ).
Mailbox(邮箱) and process data is exchanged via additional DPRAM (also called user memory用户存储器 ). EtherCAT allows addressing(编址) of user memory of up to 60kBytes. ASICs provide between 1kByte and 8kByte of DPRAM, IP Cores can be configured to provide the full 60kByte of user memory.
Application Note: The standard SyncManager configuration is(标准的同步管理配置)
- 1 SyncManager per acyclic data output (mailbox out, master to slave)
- 1 SM for acyclic data input (mailbox in, slave to master)
- 1 SM for cyclic data output (process data out, master to slave)
- 1 SM for cyclic data input (process data in, slave to master)
For process data, SM running in 3-buffer-mode(3缓存模式) need three times the length (3倍长度) of actual process data for physical memory(物理内存) . The following table shows a schema(体系结构,模式) of how to allocate(分配) the length for the 4 SM.
Table 5: DPRAM Size Calculation Example( DPRAM大小计算示例)
SyncManagerBuffer CountLength [Byte]Total length [Byte]SM0Output Mailbox1L_MbxOut1*L_MbxOutSM1Input Mailbox1L_MbxIn+ 1*L_MbxInSM2Outputs3L_Out (TxPDO)+ 3*L_OutSM3Inputs3L_In (RxPDO)+3*L_In----∑ DPRAM size
SyncManagers are enabled(开启) by the following settings of the master during network initialization(网络初始化) .
-Physical address of ESC(ESC物理地址)
-Data length (数据长度)
-SyncManager control input(同步管理控制输入) :
i. Operation mode【操作模式】 (mailbox-mode/3-buffer-mode)
ii. Access direction【访问方向:读或者写】 (Read direction/Write direction)
iii. Interrupt settings 【中断设置】 (Valid/Invalid 有效/无效 )
iv. SyncManager watchdog setting【同步管理看门狗定时器设置】 (Valid/Invalid)
v. SyncManager setting (Valid/Invalid)
The default values are set in the ESI (chapter 2.4.1); the master initializes the SyncManager using the values from the ESI.(默认值在 ESI中设置,主站初始化时调用 ESI中的值)
Syncmanagers(同步管理器)
同步管理器简称SM用来协调应用程序和主机的数据交互,同步管理器同步的是数据而非时间,同步管理器确保了应用程序和主机能够正确的写入或读取数据。同时同步管理器可以以中断的形式通知主机和应用程序发生的数据更新事件。
从站的ESC中包含多个同步管理器,每一个同步管理器都可以单独的配置:
同步管理器的配置中包括告知同步管理器其需要管理的内存地址的范围,管理内存的属性(属于读或写,属于邮箱数据或过程数据)。
所以每一种数据交互方式都会有一个同步管理器来管理,应用程序进行数据交互时,只需要更具不同的同步管理器就可以方便的区分数据的类型(PDO 或SDO、读或写)。从站在初始化时会读取SM管理器中的配置来确定数据的存放地址。
数据的交互主要有缓冲模式和邮箱模式。缓冲模式主要应用于周期性过程数据的传送。
Number of Fieldbus Memory Management Units (FMMUs)(现场总线储存管理单元)
In an EtherCAT network, the memory of all slaves can be compiled in the master(所有从站的储存都可以在主站中编辑) to a logical memory(逻辑内存) . This logical memory is managed by FMMUs to map(映射) logical addresses to physical addresses in the slavesFMMUs(逻辑内存通过 的管理和从站中的物理内存相对应) .
For the FMMU configuration in a device, each consistent output and each consistent input block needs one FMMU and an additional FMMU for mailbox status response is necessary. // 对于设备中的FMMU配置,每个一致的输出和每个一致的输入块都需要一个FMMU,并且还需要一个用于邮箱状态响应的附加FMMU。
Application Note: The standard configuration is one FMMU per each, cyclic output and cyclic input data block , optionally an additional one for mapping the mailbox response availability flag into process data (thus, no polling of mailboxes is necessary). If the outputs and inputs are groupede.g. like in Table 5, 3 FMMUs are configured, see Table 6. // 应用说明:标准配置是每个循环输出和循环输入数据块一个FMMU,还可以选择另外一个用于将邮箱响应可用性标志映射到过程数据中(因此,不需要轮询邮箱)。 如果输出和输入被分组,例如 如表5所示,配置了3个FMMU,请参阅表6。
Table 6: FMMU Configuration
FMMUAssigned SyncManagerNameLength [Byte]1SM2OutputsL_Out (TxPDO)2SM3InputsL_In (RxPDO)3SM0 & SM1Mbx-SM Status FlagsMbx In/Out Length
Distributed Clocks (DCs(同步) with other slave devices,分布式时钟 ) for synchronization
Evaluate if the device should support high precise(支持高精度) synchronization with other slave devices. If so, DCs should be supported by the selected ESC. Distributed Clocks refer to the DC function for EtherCAT slaves (chapter 1.3.5). The times held by slaves are adjusted with this mechanism(途径) and thus enable precise synchronization of the nodes(节点) in the EtherCAT network. // 评估设备是否应支持与其他从设备的高精度同步。 如果是这样,所选的ESC应该支持DC。 分布式时钟指的是EtherCAT从站的DC功能(第1.3.5章)。 通过这种机制可以调整从站保持的时间,从而实现EtherCAT网络中节点的精确同步。
EEPROM(电可擦只读存储器)
The EEPROM is mounted(安装) outside the ESC and connected via I2C with point-to-point link(点对点连接) . According to the size of the EEPROM the EEPROM_SIZE signal should be set. For more details, refer to the Knowledge Base, chapter 11.3 d electrical Interface EEPROM an(I 2C)". For EEPROM (SII) Enhanced Link Detection setting (加强连接检测设置) , refer to documentation of the ESC vendor. // EEPROM安装在ESC外部,并通过I2C与点对点链接连接。 根据EEPROM的大小,应设置EEPROM_SIZE信号。 有关更多详细信息,请参见知识库第11.3章“电气接口EEPROM和(I 2C)”。有关EEPROM(SII)增强链接检测设置,请参阅ESC供应商的文档。
Application Controller【应用控制】 (Host Controller, μ C)
If a local software application provides the device functionality, any 8 or 16 bit synchronous or asynchronous microcontroller(任何一个 8位或者 16位同步或者异步微控制器) can be connected to the ESC. The application controller communicates with the ESC via the Process Data Interfaces (PDI).
To adapt the application software on the host(为了和主站的应用程序相适应 ) controller to the ESC, sample software stacks(样本软件栈) are available for communication implementation(通讯的实现), e.g. the Slave Sample Code(从站样本代码) (SCC). If the device is a 32 bit digital I/O interface, no application controller or additional communication software is necessary. // 为了使主机控制器上的应用软件适应ESC,可以使用示例软件堆栈进行通信实现,例如从机样本代码(SCC)。 如果设备是32位数字I/O接口,则无需应用程序控制器或其他通讯软件。
In most cases, manufacturers(制造商) can use a familiar microcontroller type as application controller in the EtherCAT device(使用相似型号的微控制器作为应用控制使用在 EtherCAT设备中) . If application software already exists, e.g. for a different fieldbus, it can be used for the EtherCAT device as well. // 在大多数情况下,制造商可以在EtherCAT设备中使用熟悉的微控制器类型作为应用程序控制器。 如果应用软件已经存在,例如 对于不同的现场总线,它也可以用于EtherCAT设备。
The source code(源代码) for communications software on the host controller allocates(分配) about 70kByte. The following features are a typical configuration (referring to the Slave Sample Code):
EtherCAT State Machine (ESM), including error handling(错误处理)
Device diagnosis(设备诊断)
Master-Slave data synchronization (主从站之间的数据同步) with SyncManager event (no DCs)
Mailbox CoE
Object Dictionary (对象字典) (20 objects) for process data objects (过程数据对象)
CoE services, including CoE Info services(信息服务) , no segmented transfer (无分割转换)
A list of other available sample stacks can be obtained on the product section of the ETG website.
Application Layer Communication Protocols (应用层通讯协议)
In EtherCAT, several protocols are available (see chapter 1.3.6) for the application layer to implement (实施) the required specification of the product development(产品开发时所需的规格) . When to apply them is described here.
CAN application protocol (总线应用协议 )over EtherCAT(CoE) To provide acyclic data exchange as well as mechanisms to configure PDOs for cyclic data exchange in a structured way, CoE (with SDO-Info support) should be implemented.
Servo drive profile(伺服驱动配置文件) over EtherCAT(SoE) SoE is an alternative drive profile to the CiA402 drive profile. It is often used by drive manufacturers which are familiar with the SERCOS interface.
Ethernet(以太网) over EtherCAT(EoE) EoE is usually used to provide webserver interfaces(网络接口) via EtherCAT. It is also used for devices providing decentral standard Ethernet ports(分散生产方式的标准以太网端口) . ? File Access(文件存取组件) over EtherCAT(FoE) If the device should support firmware(固件)download via EtherCAT, FoE should be supported. FoE is based on TFTP. It provides fast file transfer and small protocol implementation.
ADS over EtherCAT(AoE)小协议实施 When planning to control the device via a .Net interface, AoE is an option to apply.
Application Note:An exemplary(典范) CoE implementation is shown below.
The user application runs the device specific software(设备专用软件) on the μ C to implement device features(实现设备功能特性 ). Sample source code(protocol stacks) offered by EtherCAT stack vendors can be used to develop this application or to adapt existing software to EtherCAT.
Application Note:EtherCAT Slave Stack Code (SSC,从站堆栈代码 ).
The SSC is a free sample codefrom Beckhoff(德国倍福自动化有限公司)(免费样本代码) which provides an interface to the ESC. For hardware independent software development(独立于硬件的软件开发) , the SSC runs on several evaluation kits(评估板) and can be customized(自定义) for implementation in accordance with the product specification. Figure 14 shows the SSC structure with the interfaces to the user specific device application(用户特定的设备应用) and the ESC.
Application Note:EtherCAT Slave Protocol Stack.(从站协议栈)
Hilscher(德国赫优讯公司) offers a Slave Control Stack based on its netX hardware withDual Port Memoryinterface (DPM,双端口记忆器 ) and it is available for the user application with an API. Figure 15 shows the protocol stack architecture(协议栈构架) with interfaces to the ESC and the user application.
Device Profiles(设备配置文件)
During network initialization(网络初始化期间) , parameter setup(参数设定) is necessary, where data does not need to be transmitted cyclically(周期性传输) but only during network initialization. Acyclic data exchange is done via mailbox protocols(非循环的数据传输通过邮箱协议) , usually via theCoEprotocol (see chapter 2.3.5). For devices with variable process data structure, the definition of a modular device description(MDP,模块化设备描述 ) is available. The MDP is described in the ETG.5001 Modular Device Profile Specification(说明书) . // 在网络初始化期间,必须进行参数设置,这些数据不需要循环传输,而仅在网络初始化期间需要传输。 非循环数据交换是通过邮箱协议(通常通过CoE协议)完成的(请参阅第2.3.5章)。 对于具有可变过程数据结构的设备,可以使用模块化设备描述(MDP)的定义。 EDP.5001模块化设备配置文件规范中描述了MDP。
The MDP is based on the object dictionary defined byCoE(CAN application protocol over EtherCAT). The object dictionary can be described as a two dimensional list(二维表) . Each list entry (每个表的入口) is identified(识别) by an index(指针,索引) (0x0000–0xFFFF) which represents an object. Each object can contain up to 255 subindices(分目录) , also called object entries. The object list is structured in different areas, see Table 7. // MDP基于CoE(基于EtherCAT的CAN应用协议)定义的对象字典。 对象字典可以描述为二维列表。 每个列表条目均由代表对象的索引(0x0000-0xFFFF)标识。 每个对象最多可以包含255个子索引,也称为对象条目。 对象列表的结构在不同区域中,请参见表7。
The idea of the MDP is to provide a basic structure for masters(为主站提供一个基本构架) and configuration tools(配置工具) to handle(处理) slaves with complex (modular) structure easily. The user has the advantage, that if the slave variables’(变量)s are sorted in an MDP style, he can find the different data types by identical patterns(相同的模式) . // MDP的思想是为主机和配置工具提供基本结构,以轻松处理具有复杂(模块化)结构的从机。 用户的优势在于,如果以MDP样式对从属变量进行排序,则他可以通过相同的模式找到不同的数据类型。
The MDP can be applied to various types of devices. It is applicable to multiple axis(多轴) servo drive system(伺服驱动系统) of various functionality groups(各种功能组) , such as positioning(位置控制) , torque(扭矩控制) and velocity control(转速控制) . It is further applicable to gateway(网关) between different fieldbuses, i.e., Profibus, DeviceNet. Modular devices are driven by two aspects: // MDP可以应用于各种类型的设备。 适用于各种功能组的多轴伺服驱动系统,例如定位,转矩和速度控制。 它进一步适用于不同现场总线之间的网关,即Profibus,DeviceNet。 模块化设备由两个方面驱动:
Comprise(包含) physically connectable modules and plurality of functionalities(多数功能) .
//包括物理上可连接的模块和多种功能。
Comprise plurality of channels(多数通道) directly being connected to the EtherCAT network.
//包括多个直接连接到EtherCAT网络的通道。
The MDP imagines slaves which consist of one or several modules. A module can be hardware which is connected/disconnected to a slave. Examples are gateways between EtherCAT and e.g. CANopen or a bus coupler(总线耦合器) between EtherCAT and a proprietary backbone bus(专用主干总线) . // MDP设想从站由一个或几个模块组成。模块可以是已连接/断开连接到从站的硬件。示例是EtherCAT与例如CANopen或EtherCAT与专有骨干总线之间的总线耦合器。
A module can also be a logical module which describes data sets, e.g. a drive which supports a velocity controlled mode and a position controlled mode –the MDP would describe the data as two modules, one for each mode.(把数据描述成 2种模式,每个对应相应的模式) // 模块也可以是描述数据集的逻辑模块,例如。一个支持速度控制模式和位置控制模式的驱动器-MDP将数据描述为两个模块,每个模式一个。
No matter what kind of module is described it needs more or less the same information categories(需要相对应的信息分类) , which are organized in the profile specific index range (Table 7). // 无论描述哪种模块,它都或多或少需要相同的信息类别,这些信息类别在配置文件特定的索引范围内进行组织(表7)。
Application Note:Modular Device Profile Structure(模块化设备配置文件结构) . // 应用说明:模块化设备配置文件结构。
Consider an MDP for a line of slave device modules which are connected together on a backbone layer(主干网层面) via LVDS and via a coupler(耦合器) with MII. Figure 16 shows a schema how to define device profiles(如何定义设备配置文件) such that a modular profile dictionary is set up for the slave device line. // 考虑一排从设备模块的MDP,这些设备通过LVDS和带有MII的耦合器在主干层上连接在一起。图16显示了一种模式,该模式如何定义设备配置文件,以便为从属设备线设置模块化配置文件字典。
For implementation of the profile (CiA402 Drive Profile) for servo drive, build the program with reference to the corresponding specifications(技术规格,说明书) . In this example, this would be the
ETG.6010 Implementation Directive(指令) for the CiA402 Drive Profile, and
IEC 61800-7 Drive Profiles and Mapping to EtherCAT.
4. 应用实例
由于EtherCAT实时工业以太网技术具有适用范围广、拓扑结构灵活、数据通信效率高、实时性强和同步性能好等多种优点,所以特别适用于实时性要求高、通信数据量大的运动控制系统。
控制系统设计采用“PC+运动控制器”的方案,构建多轴运动控制系统,采用PC机为主站、ARM+MCX314为从站处理器的架构。其核心插补与控制算法都放在工业PC中完成,运动控制器要求大为降低,其主要完成数字给定量到实际脉冲信号的转变。该控制系统方案的优势在于简化硬件设计工作,主要以标准化的硬件为主:上位机可以采用工业PC机、下位机使用开发的通用运动控制器,方便日后升级维护。工业PC机与运动控制器直接采用EtherCAT实时工业以太网进行通信连接。
4.1 主站操作系统(RTAI)
PC机部分软件以LinuxCNC为基础,往下LinuxCNC通过HAL(硬件抽象层)与EtherCAT主站驱动之间进行通信连接,然后EtherCAT主站通过以太网线给从站运动控制器发控制命令;往上利用LinuxCNC提供的Python调用接口和人机界面通信,数控系统人机界面采用PyQt开发;由于LinuxCNC需要运行实时任务,需要将普通操作系统进行改造。因此,目前的主要工作是对Linux系统进行实时性改造、安装EtherCAT主站、编写HAL模块、编写人机界面。
虽然EtherCAT主站程序能够安装在非实时操作系统上,但一般情况下会对主站进行实时性改造,而且LinuxCNC中有运行实时任务的需要,所以对Linux系统进行实时性改造迫在眉睫。众所周知,Linux系统本质上是一个分时操作系统,不是一个实时操作系统。Linux系统实时性不强使其在嵌入式应用中有一定的局限性,受内核可抢占性、进程调度方式、中断处理机制、时钟粒度、虚拟内存管理等几个方面的制约。
根据实时性系统要求以及Linux的特点和性能分析,对标准Linux实时性的改造存在多种方法,较为合理的两大类方法为:直接修改Linux内核源代码和双内核法。
1.直接修改Linux内核源代码:对Linux内核代码进行细微修改并不对内核作大规模的变动,在遵循GPL协议的情况下,直接修改内核源代码将Linux改造成一个完全可抢占的实时系统。核心修改面向局部,不会从根本上改变Linux内核,并且一些改动还可以通过Linux的模块加载来完成,即系统需要处理实时任务时加载该功能模块,不需要时动态卸载该模块。这种方法存在的问题是:很难百分之百保证,在任何情况下,GPOS(通用操作系统)程序代码绝不会阻碍RTOS的实时行为。也就是说,通过修改Linux内核,难以保证实时进程的执行不会遭到非实时进程所进行的不可预测活动的干扰。2.双内核法:双内核法是在同一硬件平台上采用两个相互配合,共同工作的系统核心,通过在Linux系统的最底层增加一层实时核心来实现。其中的一个核心提供精确的实时多任务处理,另一个核心提供复杂的非实时通用功能。其优点是可以做到硬实时,并且能很方便地实现一种新的调度策略。目前采用这种方案的主要有RTAT,RT-Linux和Xenomai。本课题采用RTAI实时包的方式完成对Linux系统的实时性改造,如图所示。
RTAI(实时应用接口)是Linux内核的一个实时扩展,RTAI是基于ADEOSC Adaptive Domain Environment for Operating System)实现,ADEOS位于Linux系统和硬件之间管理硬件中断,并控制实时内核和Linux内核的优先级,其中实时内核优先级高于Linux内核优先级。
RTAI安装:
1.下载RTAI压缩包并解压到urs/src目录下,输入命令:
cd /usr/src
sudo tar -bzip2 -xvf rtai一3.8.tar.bz2
2.下载Linux内核压缩包并解压到urs/src目录下,输入命令:
sudo cp suoxd/linux-2.6.37.1.tar.bz2 /usr/src
sudo tar -bzip2 -xvf linux一2.6.32.2.tar.bz2
3.利用RTAI源码中的文件给内核打补丁,未安装p atch需安装patch后,输入命令:
sudo patch -pl
4.配置内核,Linux2.6.32引入新的方式用于简化kernel的配置,使用命令拷贝当前配置,省去很多繁琐的内核配置选项。
5.安装内核模块,输入命令:
sudo make clean
sudo make
sudo make modules
sudo make modules install
sudo make install
6.配置RTAI,下载安装MESA库文件和EFLTK包,然后进入RTAI文件夹,执行配置,输入命令:
cd /usr/src/rtai
sudo make config
7.编译并安装RTAI,命令行窗口的RTAI安装结果如图4-2所示,输入命令:
sudo make
sudo make install
8.RTAI内核延时测试,利用RTAI源码包中的测试案例进行测试,测试结果如下:
cd /usr/realtime/testsuite/user/latency
sudo ./run
9.RTAI内核抢占实现测试,测试结果如图4-4所示,输入命令行:
cd /usr/realtime/testsuite/user/preempt
sudo ./run
4.2 主站EtherCAT程序(IGH)
本控制系统EtherCAT主站以实时Linux操作系统为基础,在Linux环境下开发主站有两方面优势,一方面Linux为开源系统,方便对底层进行修改;另一方面便于进行嵌入式移植。Linux下的EtherCAT主站架构如图所示:
Linux操作系统可分为内核态和用户态。内核态是操作系统的核心,负责进程管理、内存管理、进程间通信和设备管理和驱动等,实时性要求高。用户态主要运行人机交互、数据监控等实时性要求不高的程序。
EtherCAT主站模块运行在内核态,可支持一个或多个EtherCAT主站,且同时提供应用接口和设备接口。用户通过应用接口访问主站,通过设备接口连接设备到指定主站。EtherCAT的以太网设备驱动模块通过主站设备接口与主站连接,EtherCAT设备协议可直接由以太网帧传送,因而主站能同时并行处理EtherCAT数据帧和通用以太网通信。
在Linux上安装EtherCAT主站程序,这里选择EtherLab开发的IgH EtherCAT Master,首先下载主站安装文件gHEtherLab.tar.bz2,下载文件后解压缩进入含有Makefile文件的目录安装主站,输入命令:
make ethercatMaster
make ethercatMasterinstall
sudo /etc/init.d/ethercat start
ethercat master
若最后两条指令运行正常则说明主站安装成功。
4.3 主站应用开发(LinuxCNC)
LinuxCNC是一款运行在Linux平台下的实时开源数控软件。起源于美国国家标准与技术研究院的增强型运动控制器EMC (Enhanced Machine Controller)研究项目,用于机床的数控系统。经过十几年的发展,LinuxCNC系统广泛用于冲床、车床、3D打印机、激光切割机、等离子切割机、机器人手臂等领域。其主要优点有:提供多个标准化的用户界面、用户也可以采用自主开发的GUI、自带G代码解析器、支持伺服电机控制步进电机开环控制、运动控制器功能强大、支持非笛卡尔坐标运动系统、采用2.4或2.6的Linux内核支持RT-Linux或RTAI实时补丁。LinuxCNC源代码可以免费下载,安装在Linux系统上。LinuxCNC软件架构如图所示。
LinuxCNC是一个模块化设计的软件,大致可以分为以下四个主要模块:运动控制器(EmcMot)、数字I/O控制器(EmcIO )、任务控制器(EmcTask )、图形用户界面(GUI)。
用户操作界面负责接收用户命令并反馈最新状态;
任务控制器是整个系统的决策层,主要负责对各种命令进行决策分类、解析发送给不同的模块;
运动控制器是实时刷新的,主要完成路径规划、插值运算等;
数字I/O控制器负责处理I/O信号,通过NML消息与运动控制器通信,因为不同设备I/O各不相同,这时需要硬件抽象层HAL文件建立软逻辑电路来控制实际I/O ;
HAL
HAL硬件抽象层是LinuxCNC系统的关键技术之一,通过引入HAL机制,为用户提供了统一的驱动开发接口,方便编写驱动,还能利用配置文件将相应的HAL模块连成一个复杂系统,方便数据传递。HAL模块结构图如图所示。
EtherCAT主站驱动与LinuxCNC之间采用HAL机制进行通信,硬件抽象层将各个底层的硬件驱动、实时算法抽象出来,构成一个组件,组件是由函数、参数、输入输出引脚所组成,输入信号包括来自LinuxCNC的控制信号、用户配置信息,输出信号包括提供给LinuxCNC的反馈量等。将编写好的HAL模块命令为ec.comp,编译生成ec.ko,利用insmod命令将其安装后就可以加载到线程中。
当HAL模块启动的时候,需要对变量进行初始化,但完成EtherCAT主站的初始化是更重要的,只有初始化了主站,设置好参数,建立起完整的通信网络,才能进行接下来的周期数据传输,其中PDO为进程数据对象、SDO为服务数据对象。如图为EtherCAT主站的初始化流程图。
主站初始化完成后,LinuxCNC开始正常运行。LinuxCNC在每个控制周期通过硬件抽象层下发控制命令,并获取从站设备反馈的信息。
HAL周期任务流程图如图所示。
对于采用位置控制的伺服单元,HAL模块每次都要计算出本控制周期的位移或目标点,然后通过EtherCAT总线发送到从站运动控制器;
然后从站运动控制器在每个控制周期上报编码器位置增量和I/O状态,HAL模块计算出轴的实际位置后发送给LinuxCNC。
UI界面
在Linux环境下开发用户界面的语言有Python, C++等,图形库有QT, GTK等。由于控制界面运行于用户态,实时性要求不高,同时兼顾开发难度和周期,本课题采用Python语言,结合PyQT图形库开发冲床控制界面。Python是一种面向对象的脚本语言,与其他语言相比,Python具有如下优点:面向对象、公开免费、跨平台可移植、功能强大、使用简单、模块丰富。QT是一个功能丰富广泛使用的GUI图形库,可用于Windows, Linux等平台,具有很好的可移植性。PyQt是Python语言与Qt图形库相结合的产物,从而可以通过Python来使用Qt图形库,具有模块丰富、跨平台和使用信号与槽机制的优点。数控界面调用LinuxCNC抽象出的Python接口与任务控制器通信,并监视LinuxCNC状态信息和错误信息。
本课题冲床数控系统设计加工状态、参数设置、警告与诊断和软件设置四个状态界面,四个状态界面下一共分设13个子界面,各个界面之间可以通过按钮进行切换,数控系统界面结构图如图所示。 系统的主界面由菜单栏、工作窗口、快捷工具栏和消息提示栏这四部分构成。菜单栏可以根据不同的操作需求切换不同的工作窗口,快捷工具栏是一些常用的快捷按钮,消息提示栏是提示快捷按钮内容和显示系统运行状况、错误信息汇报的区域,如图所示。 2.参数设置界面:参数设置界面用于设置控制系统及机械的参数,分设了系统参数设置、运动轴参数设置及模具库参数设置这3个子界面。下面主要讲解运动轴参数,运动轴参数设置界面如图所示。
3.警告与诊断界面:息记录界面这2个子界面。警告与诊断界面下设有警告信息诊断界面、历史警告信,如图所示。
4.软件设置界面:软件设置界面用于设置软件与外部设备的通讯参数和显示软件的版本等信息,设有软件信息、外部设备通讯设置及高级设置这3个子界面。下面讲解外部设备通讯设置界面,如图所示。
4.4 ET1200
EtherCAT从站控制器ESC(EtherCAT Slave Controller)是由德国BECKHOFF自动化有限公司提供的,包括ASIC芯片和IP-Core,实现EtherCAT数据链路层协议。目前ASIC从站控制专用芯片有ET1100和ET1200,也可以使用IP-Core将EtherCAT通信功能集成到设备控制FPGA当中,并根据需要配置功能和规模。图为ET1200从站控制器结构图: ET1200最多支持3个EtherCAT物理通信端口:
其中一个可以作为MII接口,用于与物理层PHY芯片交换数据。因为EtherCAT并不定义该接口的物理层,MII接口也是和传输介质无关接口,因此这种接口方式下的数据链路层与物理层彻底隔开,从而以太网能够选用任意的传输介质,包括无线电和光纤。ET1200其余两个接口均为EBUS接口,EBUS是德国倍福公司使用的LVDS(Low Voltage Differental Signaling)标准定义的数据传输标准,通信速率高达100Mbit/s,能与ESC芯片直接相连,减小PCB板体积和降低成本。EBUS的传输距离最大为10m。ET1200提供的物理设备接口有数字I/O和SPI两种,选用ARM作为从站微处理器是一般通过SPI接口访问ET1200。ET1200采用3.3 V供电,最大工作电流约为70mA,芯片发热量很小。
ET1200的主要技术指标:
ET1200从站控制器使用外部EEPROM来存储从站设备信息,下表是EEPROM存储数据分布示意图,其中0~63为基本信息,每次ESC启动时都会从EEPROM中读取其中的配置信息。
4.5 从站程序设计
运动控制器软件设计包括ARM主控制程序及外围电路驱动程序,外围驱动程序包括ET 1200驱动程序、AD采样芯片驱动程序、RS232驱动程序、SPI串行总线、FSMC并行总线驱动程序以及MCX314加减速控制程序设计等。运动控制器程序在STM32F427这款MCU上使用C语言开发,开发环境为Windows 7下的Keil uVision_5集成开发环境。
ARM主控制程序是运动控制器的核心,需要完成各个函数初始化、参数配置、数据处理、逻辑流程控制及控制算法运算等,图为支持查询模式(自由运行模式)的流程图。
ARM芯片在上电后不久进入main()函数,在main()函数中最先完成一系列系统正常运行相关函数的初始化,如延时初始化函数、LED初始化函数、串口初始化函数、中断向量表配置初始化函数,然后完成SPI初始化函数、定时器初始化函数、EtherCAT初始化函数以及FSMC总线初始化函数等。
接着完成通信初始化工作,查询主站的状态控制寄存器,读取事件请求寄存器0x220、相关配置寄存器,启动或关断相关通讯服务。
在完成以上工作后就进入主循环while(1),进行应用层任务处理和周期性数据处理,周期性数据处理和应用层任务处理有查询模式(自由运行模式)或同步模式(中断模式)这两种,本程序采用同步运行模式,所以在主循环中主要处理非周期性的任务。同步运行模式下周期性数据在中断服务程序中处理。
void main(void)
{
//--一执行一系列初始化函数--一
Delay_Init(168); //初始化延时函数
Led_Init(); //初始化LED端口
Uart_Init(9600); //初始化串口
AD7606_Init(); //初始化AD采样芯片
NVIC_Config(); //初始化STM32时钟及外设
SPI_Config(); //ET 1200用SPI总线初始化配置
Timer2_Init_ Config(); //Timer2初始化配置
ET 1200_GPIO_Config(); //ET 1200 GPIO初始化配置
ECAT_Init(); //初始化通信变量和ESC寄存器
FSMC_Init(); //FSMC并行总线初始化
//--一初始化完成,进入主循环--一
while(1)
{
ET1200_AlEvent=pEsc->AlEvent; //读应用层事件请求寄存器,
// ET1200_AlEvent为全局变量,在头文件中定义
if(!ET1200_IntEnabled) //处于自由运行模式(ET 1200_ IntEnabled -=0
//处于同步模式(ET1200 IntEnabled==1)
free_ run(); //处于自由运行模式时,进行周期性数据查询
el_event(); //应用层任务处理,包括状态机和非周期性数据等
}
}
从站设备可以运行于同步模式或自由运行模式,在自由运行模式中使用查询方式处理周期性过程数据,在同步模式使用中断服务程序处理性数据。
变量ET1200 IntEnabled来控制运行模式。ET1200 IntEnabled为1时,使用同步模式,ET1200 IntEnabled为0时,使用自由运行模式。
根据主站对SM的配置,在函数、参数初始化阶段来初始化变量ET1200_ IntEnabled,确定当前的运行模式。
本程序选择同步模式,以下将按照该模式讲解一个中断服务数据处理的工作流程,如图所示。
4.6 实验测试
实验测试平台由一台PC机、一套自主研发的冲床数控系统软件、一台自主研发的五轴高速运动控制器、一套单轴丝杠滑台、一套二维伺服平台、一套四轴同步测试架组成。
实验过程中需要注意,因为目前运动控制器专为数控冲床设计,仅保留1个M II接口连接主站,且设计最多连接轴数为五轴,故连接四轴同步测试架时不能接单轴丝杠滑台和二维伺服平台;测试过程中工业PC机和显示器使用笔记本代替。在平台上测试通过后将控制系统接入到LX230B型数控转塔冲床上进行测试和参数调试,最终成功开发出30T数控转塔冲床用高速运动控制系统。
基本通信功能测试
EtherCAT主从站基本通信功能测试时首先按图所示,使用网线将PC机与从站运动控制器连接起来后,在数控软件通信设置的外部设备通信设置中找到运动控制器连接状态,点击重新连接。使用Wireshark抓包工具抓取连接过程中主站广播的数据包,最终连接成功时运动控制器连接状态指示灯变为ON,从站状态变为操作状态(OP),从站状态机启动正常,如图所示。
由图可知该实验中EtherCAT报文的格式。报文总长度60个字节,前14个字节是以太网数据帧头,包括6字节的目的地址(ff:ff:ff:ff:ff:ff ) } 6字节的源地址(78:a5:04:c0:be:6f)} 2字节的帧类型(Ox88a4);接着是2字节的EtherCAT头,包括11位数据长度(Ox02a)}1位保留位(Ox0)}4位类型位(0x1);然后是EtherCAT数据,数据为2个子报文,每个子报文包含10字节子报文头,16字节数据,2字节WKC(工作计数器)。Wireshark抓取的报文与2.1节中的EtherCAT帧格式一 致,从而主从站之间实现了基本通信。
控制系统基本功能测试
控制系统基本功能测试是验证系统软硬件功能正常的重要实验,该项测试在单轴丝杠滑台完成,连接好PC机、运动控制器和单轴丝杠滑台,如图所示。在数控软件的手动加工中对输出I/O如伺服使能、紧急停止,回零点如X轴回零、Y轴回零,单轴位移控制如X+, X-, Y+, Y-进行测试,并观察滑台的运动情况和伺服驱动器面板显示来判断各项功能是否正常。经测试,软件上的相关按钮都工作正常,五个轴的接口、I/O接口工作正常,产生的脉冲精度误差为0。故数控系统软硬件基本功能测试通过。
G代码解释、圆弧插补测试
通过二维伺服运动平台圆弧插补实验测试运动控制系统G代码解释、圆弧插补等功能。该项测试主要在二维伺服平台上完成,连接PC机、运动控制器和二维伺服平台,如图所示,通过数控系统控制二维伺服运动平台的X轴和Y轴电机做圆弧插补,利用上方横梁固定的笔杆记录二维平台上白纸相对运动下的轨迹。二维平台中的两组伺服机丝杠的参数完全一致,丝杠螺距为20mm,设定伺服驱动器驱动电机旋转一圈为2000个脉冲,可知丝杠走1 mm需要100个脉冲,由此设置数控软件中的X, Y轴脉冲当量都为1000。
使用AutoCAD设计一个直径D为80mm的圆周,如图所示,绘制完成后保存为.dxf格式,然后使用一体化饭金CAD/CAM编程软件cncKad将.dxf格式的图纸转化为冲床数控软件所需的.PNC文件,即G代码。然后将G代码文件导入到数控软件中,预加工仿真运行无误后启动伺服,进行实际加工,最终得到实际绘制效果图如图_5 -6所示。绘制出的圆周尺寸精确,控制系统通过圆弧插补测试。
多轴运动的同步性能测试
多轴同步测试实验用来测试运动控制系统多轴运动的同步性能。该项测试主要利用四轴同步测试架完成,如图所示,测试架上固定安装有A, B, C, D共4组电机和驱动器。将电机驱动器与运动控制连接,控制器通过EtherCAT总线与PC机连接,打开数控软件,在加工状态中选择手动加工,控制伺服电机A, B,C, D同时做顺时针运动旋转,通过长时间运行测试观察轴上4个光盘指向分析电机运动的同步性。经过长时间测试观察后,电机按钮停止伺服轴转动,可以看到4个电机指向同一方向,驱动器面板显示脉冲数也一致。
实际产品应用
在上一节的一系列实验后,控制系统的各项功能都顺利通过测试,接下来把开发好的控制系统制作成便于使用的操作台和控制柜接入到LX230B型30T的数控转塔冲床上,取代原有的控制系统,操作台和控制柜如图所示。该冲床选用安川 -7系列AC伺服电机、 -V系列AC伺服驱动器。首先调试好伺服电机与伺服驱动器之间构成电流环、速度环的PID参数,让闭环的性能达到较好水平,再接入控制系统,其中编码器分频脉冲输出C相信号在轴回原点时使用。
为观测控制系统在数控转塔冲床上的应用效果,需要采用非接触测量仪测量板材运动过程中的振动曲线。根据实验室现有的条件,采用由日本Keyence公司生产的LK-G400型激光位移传感器和LK-GD_500型控制器作为非接触式测量工具。 LK-G400的主要技术参数为:使用距离为400mm,测量范围为士100mm,取样率20us,钡量精度为gum o LK-GD_500型控制器主要参数为:最小显示单位为O.Olum,显示周期10次/秒。
在冲床大板材(1200mm X 2_SOOmm)上选取测试点W点,如图所示。采用S型曲线加减速规划,加速度g为6,控制板材在X轴上高速移动lOmm,运动控制器输出的PULS(脉冲)信号局部波形如图所示。
使用软件LK-Navigator读取传感器测量的数据,如图所示。由图分析可知调节时间为130ms(按士0._5%误差带)、稳态误差士0.0_Smm,各项指标良好,达到工业应用要求。
5. 工具
5.1 TwinCAT
EtherCAT主站方案实现一般都采用倍福公司的TwinCAT, TwinCAT实现了强大的EtherCAT主站功能,从站XML表配置、EEPROM配置文件操作、扫描EtherCAT从站等,下图为使用TwinCAT开发冲床数控系统的过程。因为TwinCAT是基于Windows风格,拥有较好的人机交互界面,功能强大,非常适合上位机控制窗口的开发,但TwinCAT运行于Windows环境下,实时性很差,而且TwinCAT和Windows系统需要付费才能商业化应用,价格较高。
在学习EtherCAT的时候,TwinCAT是必须要学习的。TwinCAT软件其功能强大,可以写plc程序,可以写图形化界面,可以观察波形等等。初次学习时我就参考TwinCAT 3运动控制教程和TwinCAT NC PTP实用教程,把TwinCAT 3中界面的一些功能都试了一遍。另外用功能块学着写了凸轮、齿轮的程序,并用Visualization图形化界面来控制。(在学习TwinCAT时,要充分利用好帮助文档)。
因为我的任务是做一致性测试,所以关注点大部分放在了对协议的了解上,涉及到一致性测试的文档有ETF7000.2、ETG7010。具体可以去ETG官网上查找相关资料。做一致性测试时需要用到ET9400,这款软件不是免费的。目前还没开始测这部分。
对于带有EtherCAT伺服驱动器的性能的测试,用TwinCAT带着简单测过csp、csv、cst这三种模式。如果想要系统的测试驱动器所支持的操作模式,必须对驱动器的相关知识有一定的了解。另外就是对对象字典中对象充分了解。TwinCAT中的Process Data和CoE-Online界面是很重要的。这点我也没有完全掌握。没有以太网基础,对协议没有了解,直接接触EtherCAT这条学习之路感觉很艰难!
5.2 LinuxCNC
PC机部分软件以LinuxCNC为基础,往下LinuxCNC通过HAL(硬件抽象层)与EtherCAT主站驱动之间进行通信连接,然后EtherCAT主站通过以太网线给从站运动控制器发控制命令;往上利用LinuxCNC提供的Python调用接口和人机界面通信,数控系统人机界面采用PyQt开发;由于LinuxCNC需要运行实时任务,需要将普通操作系统进行改造。因此,目前的主要工作是对Linux系统进行实时性改造、安装EtherCAT主站、编写HAL模块、编写人机界面。
5.3 开源的EtherCAT Master
EtherCAT的主站开发是基于EtherCAT机器人控制系统的开发中非常重要的环节。目前常见开源的主站代码为的RT-LAB开发的SOEM (Simple OpenSource EtherCAT Master)和EtherLab的the IgH EtherCAT® Master。使用起来SOEM的简单一些,而the IgH EtherCAT® Master更复杂一些,但对EtherCAT的实现更为完整。
具体比较如下表:
参考资料
EtherCAT协议介绍.pdfEtherCAT Technology Group _ 技术概览记录STM32开发一个完整的EtherCAT的过程
优惠劵
pwl999
关注
关注
209
点赞
踩
1343
收藏
觉得还不错?
一键收藏
知道了
23
评论
EtherCAT (学习笔记)
文章目录1. 简介1.1 运动控制1.2 实时以太网1.3 EtherCAT2. EtherCAT原理介绍2.1 实时性2.2 端口管理2.3 EtherCAT网络拓扑2.4 EtherCAT网络协议栈2.5 EtherCAT数据帧格式2.6 EtherCAT设备寻址方式2.7 分布式时钟(Distribute Clock)2.8 应用层(Application Layer)2.9 设备配置(Device Profile)2.10 主站设计2.11 从站设计3. 应用层(Application Layer)
复制链接
扫一扫
专栏目录
ethercat总结
02-14
ethercat总结,主要是Ethercat基础介绍,运行原理与常用协议说明
EtherCAT中文介绍
10-22
实时以太网EtherCAT中文介绍资料,英文不好的可以参考一下。EtherCAT(以太网控制自动化技术)是一个开放架构,以以太网为基础的现场总线系统,其名称的CAT为控制自动化技术(Control Automation Technology)字首的缩写。EtherCAT是确定性的工业以太网,最早是由德国的Beckhoff公司研发。
23 条评论
您还未登录,请先
登录
后发表或查看评论
EtherCAT Slave Stack Code (SSC)
05-28
BECKHOFF(倍福)官方提供EtherCAT从站协议栈代码生成工具
版本:SSC V5.12(Tool 1.4.2)
EtherCAT EoE
最新发布
weilan0818的博客
01-16
453
EoE:将以太网帧插入到 EtherCAT 协议中。EtherCAT协议中的以太网帧通过非循环邮箱通信进行传输。
Ethercat概念学习
weixin_43914278的博客
04-10
1583
最近我们要基于Ethercat技术进行开发,首先需要了解其基本原理,github上看到了有相关实现,一起来看看吧。
EtherCAT.rar
08-12
搜集的EtherCAT官方相关资料,学习EtherCAT参考资料, 协议说明等等
ethercat学习笔记1
08-08
代码的笔记放到第二章。1.8 松下的从站 PDO映射。6040h控制字这个控制字是用来控制伺服电机上使能的。6041状态字这个状态字读取伺服电机的状态。控制模式
EtherCAT介绍
热门推荐
人人都懂物联网
03-11
1万+
EtherCAT(以太网控制自动化技术)是一个以以太网为基础的开放架构的现场总线系统,EtherCAT名称中的CAT为Control Automation Technology(控制自动化技术)首字母的缩写。最初由德国倍福自动化有限公司(Beckhoff Automation GmbH) 研发。EtherCAT为系统的实时性能和拓扑的灵活性树立了新的标准,同时,它还符合甚至降低了现场总线的使用成本。
EtherCAT简介
weixin_41883890的博客
06-30
2394
EtherCAT(用于控制自动化技术的以太网)是Beckhoff(倍福)在2003年开发的实时以太网网络。它基于CANOPEN协议和以太网,但是与Internet通信或网络通信不同之处在于,它专门针对工业自动化控制进行了优化。这些标准由EtherCAT技术小组(简称ETG)定义和维护。使用OSI网络模型,以太网和EtherCAT依赖于相同的物理和数据链路层。除此之外,由于针对不同任务进行了优化,因此这两个网络在设计上有所不同。例如,以太网被设计为通过许多不同的节点发送大量数据。它能够与数十亿个单独的地址之间
【EtherCAT】一、入门基础
06-09
5266
EtherCAT(Ethernet Control Automation Technology)是一种高性能实时以太网通信协议,用于在工业自动化领域中进行实时控制和通信。它是由德国Beckhoff自动化公司在2003年开发的,并被国际电工委员会(IEC)标准化为IEC 61158标准。EtherCAT的设计目标是实现极低的通信延迟和高带宽的数据传输,以满足高速控制和数据采集的需求。它通过一种特殊的主从架构实现,其中一个主站(Master)负责协调整个网络,而从站(Slave)则负责提供输入输出功能。
工控协议解读之EtherCAT协议硬核分析(转自知乎“智能制造之家“)
qq_43599327的博客
09-07
7036
EtherCAT协议
ethercat_slave_stack_code_tool_SSC_V5i12.rar
08-13
EtherCAT Slave Stack Code Tool 倍福官方从站开发工具5.12版本。
Ethercat xml规范
05-12
Ethercat xml规范
EtherCAT示例文档
03-30
EtherCAT示例文档
EtherCAT主站配置过程分析
01-15
固高主站+一个固高GTHD伺服驱动Ethercat通讯建立全过程分析
ethercat技术
11-04
ethercat技术
EtherCAT SSC V5.12
03-29
Ethercat从机协议栈代码工具5.12版,工具tool版本:1.4.2。
ETHERCAT总线控制文件
08-10
ETHERCAT总线控制文件,让你快速学习总线!
Ethercat学习资料
04-02
以下是关于EtherCAT学习资料的一些推荐:
1. EtherCAT官方网站:https://www.ethercat.org/
官方网站提供了EtherCAT协议的详细介绍、技术规范、应用案例等内容,是学习EtherCAT的重要参考资料。
2. EtherCAT技术手册
EtherCAT技术手册是一本详细介绍EtherCAT协议的书籍,包括EtherCAT协议的基本原理、应用案例、网络拓扑结构等内容,对于学习EtherCAT协议非常有帮助。
3. EtherCAT开发者论坛:https://forum.ethercat.org/
EtherCAT开发者论坛是一个交流和分享EtherCAT开发经验的平台,里面有很多有关EtherCAT协议的讨论和问题解答,对于学习和开发EtherCAT应用非常有帮助。
4. EtherCAT开发工具
EtherCAT开发工具包括EtherCAT协议分析器、EtherCAT节点开发工具等,可以帮助开发者更好地理解和开发EtherCAT应用。
5. EtherCAT培训课程
EtherCAT培训课程可以帮助初学者快速入门EtherCAT协议,掌握EtherCAT网络的设计和应用,提高开发效率。
总之,学习EtherCAT需要系统的学习和实践,建议初学者从官方网站入手,逐步深入学习,同时结合实际应用场景进行实践。
“相关推荐”对你有帮助么?
非常没帮助
没帮助
一般
有帮助
非常有帮助
提交
pwl999
CSDN认证博客专家
CSDN认证企业博客
码龄16年
暂无认证
142
原创
1万+
周排名
3万+
总排名
68万+
访问
等级
6905
积分
1510
粉丝
898
获赞
150
评论
4870
收藏
私信
关注
热门文章
EtherCAT (学习笔记)
67258
Xenomai (学习笔记)
21769
Device Tree 详解
19630
Unwind 栈回溯详解
18367
Linux bpf 1.1、BPF内核实现
18328
分类专栏
Linux Kernel解析
51篇
Riscv
2篇
Trace
29篇
Arm Linux
11篇
Android
1篇
Linux 驱动三板斧
21篇
Linux Monitor
9篇
Security
12篇
Misc
6篇
VxWorks
6篇
Stability
2篇
Performance
1篇
Power
Virtualization
2篇
RealTime OS
3篇
Motion Control
3篇
AI
最新评论
RISCV 入门 (学习笔记)
中南甘帅问贴贴:
开芯院和日报的网址都寄掉了,不看好riscv的未来
Linux usb 4. Device 详解
努力学习LINUX的嵌入式开发工程师:
我怎么没早点看到你
Linux usb 7. Linux 配置 ADBD
-Promise810:
其实不用执行命令 我记得/etc/ 目录下有个启动脚本专门 执行命令的 你可以看看那个脚本怎么写的
Linux usb 7. Linux 配置 ADBD
一名不会算法的在职算法工程师:
老兄,你还记得执行什么命令吗?
Linux usb 7. Linux 配置 ADBD
-Promise810:
检查一下设备树配置 对应的 usb 接口是否支持从机模式 支持的话 这个usb控制器就能出现
您愿意向朋友推荐“博客详情页”吗?
强烈不推荐
不推荐
一般般
推荐
强烈推荐
提交
最新文章
Linux 驱动模块内存精简
Linux Phy 驱动解析
Linux mem 2.8 Kfence 详解
2023年1篇
2022年5篇
2021年29篇
2020年43篇
2018年26篇
2017年45篇
目录
目录
分类专栏
Linux Kernel解析
51篇
Riscv
2篇
Trace
29篇
Arm Linux
11篇
Android
1篇
Linux 驱动三板斧
21篇
Linux Monitor
9篇
Security
12篇
Misc
6篇
VxWorks
6篇
Stability
2篇
Performance
1篇
Power
Virtualization
2篇
RealTime OS
3篇
Motion Control
3篇
AI
目录
评论 23
被折叠的 条评论
为什么被折叠?
到【灌水乐园】发言
查看更多评论
添加红包
祝福语
请填写红包祝福语或标题
红包数量
个
红包个数最小为10个
红包总金额
元
红包金额最低5元
余额支付
当前余额3.43元
前往充值 >
需支付:10.00元
取消
确定
下一步
知道了
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝
规则
hope_wisdom 发出的红包
实付元
使用余额支付
点击重新获取
扫码支付
钱包余额
0
抵扣说明:
1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。 2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。
余额充值
【EtherCAT】4.实现一个成熟的从站 - 知乎
【EtherCAT】4.实现一个成熟的从站 - 知乎首发于EtherCAT切换模式写文章登录/注册【EtherCAT】4.实现一个成熟的从站小皎皎一只可爱的小皎皎学习EtherCAT最好从从站开始,因为从站包含了EtherCAT大量原理,例如状态机,PDO映射等。学习从站代码有利于理解过程数据如何传输,XML有什么作用。本文介绍一些从站的基础知识,以及如何设计一个功能完善的从站。从站硬件无论是以ASIC还是FPGA的形式,ESC都是从站的核心,主站通过读写ESC的DPRAM空间实现数据传输。ESC通过PDI接口将数据发送到MCU,在MCU中执行实际的应用层操作。ESC根据倍福公司的IP core设计,目前主流的ESC芯片包括: ASIX公司的AX58100芯片;BeckHoff自己的ET1100芯片;Microchip的LAN9252芯片;FPGA:ET1810(altera)和ET181(xilinx);由于都是基于BeckHoff的IP core设计的,因此这几个芯片在实际功能上差距并不大,区别在于DPRAM的大小,SM的数量,FMMU的数量,PDI的方式等。芯片网口FMMUSMRAM(kBYTE)数字IOSPI slaveLocal BUSAX581002内部PHY,1MII88932Y8/16 asyncLan92522内部PHY,1MII34432Y8/16 sync/asyncET11004EBUS/MII88816Y8/16 sync/async关于芯片的详细参数,可以访问ESC具有各类AL寄存器供主站访问,但实际不执行具体的应用层操作,从站应用层的管理由专门的MCU进行。stm32有强大的性能和完善的生态,因而是应用层使用最为广泛的芯片,也可以采用其他的硬件例如Arduino或者ESP32实现应用层逻辑,但是要支持对应ESC的相关PDI接口。一般来说,从站硬件系统如下图所示:从站最小系统从站软件从站帧的链路层功能都是由ESC完成的。从站软件运行在MCU中,主要执行的是应用层的操作。MCU通过PDI接口读取ESC中的PDO和SDO数据,然后执行应用层的处理,例如状态机,COE,EOE等相关逻辑。MCU需要一套协议栈执行相关的逻辑,目前使用最多的从站协议栈是EtherCAT技术组(EtherCAT Technology Group,ETG)为会员提供的Slave Stack Code(SSC),SSC支持几乎所有应用层协议栈(EOE,COE,FOE)等,同时还提供了对专有协议Cia402等的支持。除此之外,SSC还提供了专门的工具来配置协议栈和PDO。SSC的缺点是,它是针对BeckHoff自己的PIC和ET1100芯片写的,如果使用stm32或者其他通用处理器,需要手工移植代码。ssc的代码框架除了SSC之外,另一个比较有名的EtherCAT开源协议栈是SOES(GitHub - OpenEtherCATsociety/SOES: Simple Open Source EtherCAT Slave),SOES支持EOE和COE这两种较为常用的应用层协议,同时支持静态和动态的PDO映射。SOES的代码相较于SSC精简很多,代码可移植性较好。商用从站协议栈中,比较具有代表性的是KPA协议栈(https://koenig-pa.de/products/ethercat/kpa-ethercat-slave-stack)。作为商用协议栈,KPA协议栈几乎支持所有的EtherCAT特性,包括: 邮箱协议:COE,EOE,FOE,SOE,VOE 分布时钟DC;不同的扫描速率;从可移植性的角度,KPA协议栈实现了一个硬件抽象层,支持不同ESC和主控芯片的数据交互。下图是KPA协议栈的程序结构,从图中可以看出,数据从DPI传输到MCU后,首先通过的是硬件抽象层,主循环轮询AL事件来获取过程数据和邮箱数据的更新,然后基于对象字典更新PDO和SDO。从站功能操作系统层对于实时性和同步要求极高的场合,一般一个系统运行一个从站任务就好了,例如电机驱动从站,此时不建议使用操作系统,直接进行SSC协议栈移植即可。但是实时要求不强的场合,每个任务/接口使用一个从站是很浪费的,毕竟ESC还是有点小贵的,对于任务很多的从站,还是有必要上嵌入式实时系统。下面介绍一下嵌入式操作系统的作用。操作系统层的主要作用是合理对从站任务进行调度。作为现场总线的一部分,一个EtherCAT从站一般至少包含两个任务,一个从主站获取EtherCAT数据,另一个与控制设备(比如电机或CAN总线)交互。在多任务环境下,为了确保EtherCAT通信的实时性、增强任务调度的合理性、有效利用系统资源,从站应当基于实时操作系统进行开发。相较于Linux等操作系统,嵌入式操作系统具有如下特点:小型系统:由于嵌入式设备功能明确,操作系统往往与应用程序编译在一起运行。实时性:嵌入式操作系统往往是实时操作系统。很多嵌入式设备对处理的实时性有严格要求,这种实时性是通过操作系统层面的任务调度机制、任务优先级的设定和应用程序的快速处理来达到的。可移植性:由于嵌入式设备的应用场景多样,复杂程度千差万别,应用程序的大小各不相同,移植的需求是频繁发生的。ucos,vxworks,FreeRTOS和RT-thread是较具代表性的实时操作系统。这里以RT-thread为例介绍嵌入式实时系统的组成,RT-thread不仅是一个实时操作系统,也是一个完善的嵌入式软件生态。它的底层是RT-thread内核,基于内核还提供了网络框架,设备框架,以及各类API。最后在应用层还提供了各类具体应用。RT-thread架构线程管理 RT-thread内核是一个RT-thread程序的核心,RT-thread内核是一个基于优先级的全抢占式多线程调度系统,在该实时系统中,线程是最小的调度单位,系统中除了中断处理函数、调度器上锁部分的代码和禁止中断的代码是不可抢占的之外,系统的其他部分都是可以抢占的,包括线程调度器自身。RT-thread的线程调度关系如下。在RT-thread 中,实际上线程并不存在运行状态,就绪状态和运行状态是等同的。RT-thread线程RT-thread最多支持256个线程优先级,0优先级代表最高优先级,最低优先级留给空闲线程使用。同时它也支持创建多个具有相同优先级的线程,相同优先级的线程间采用时间片轮转调度算法进行调度,使每个线程运行相应时间。线程间通信 RT-thread支持线程间的同步和通信。采用信号量、互斥量与事件集实现线程间同步,线程通过对信号量、互斥量的获取与释放进行同步。支持邮箱和消息队列等通信机制。邮箱和消息队列的发送动作可安全用于中断服务例程中。通信机制支持线程按优先级等待或按先进先出方式获取。时钟管理 任何操作系统都需要提供一个时钟节拍,以供系统处理所有和时间有关的事件,如线程的延时、线程的时间片轮转调度以及定时器超时等。时钟节拍是特定的周期性中断,中断之间的时间间隔取决于不同的应用,时钟节拍率越快,系统的额外开销就越大,从系统启动开始计数的时钟节拍数称为系统时间。RT-Thread 的时钟管理以时钟节拍为基础,时钟节拍是 RT-Thread 操作系统中最小的时钟单位。RT-Thread 的定时器提供两类定时器机制: 单次触发定时器:这类定时器在启动后只会触发一次定时器事件,然后定时器自动停止。 周期触发定时器:这类定时器会周期性的触发定时器事件,直到用户手动的停止定时器否则将永远持续执行下去。通常使用定时器定时 回调函数(即超时函数),完成定时服务。用户根据自己对定时处理的实时性要求选择合适类型的定时器。内存管理 内存是系统的重要资源,特别是对于资源紧张的嵌入式设备来说。RT-Thread将内存分为动态内存堆和静态内存池,对于动态内存的申请,RT-Thread提供小内存分配算法,slab算法和memheap算法。为了避免内存碎片,提高分配效率,RT-Thread还在.data段提供一个静态的内存池。设备管理 和Linux驱动框架类似,RT-Thread也通过I/O设备模型框架对外设进行管理。I/O 设备管理层实现了对设备驱动程序的封装。应用程序通过 I/O 设备管理接口获得正确的设备驱动,然后通过这个设备驱动与底层 I/O 硬件设备进行数据交互。设备驱动程序的升级、更替不会对上层应用产生影响。这种方式使得设备的硬件操作相关的代码能够独立于应用程序而存在,双方只需关注各自的功能实现,从而降低了代码的耦合性、复杂性,提高了系统的可靠性。硬件抽象层硬件抽象层的主要作用是提升程序的可移植性。与ESC的数据交互,是EtherCAT从站MCU最为重要的功能。MCU通过PDI访问ESC的内存空间,读取寄存器和过程数据,因此,有必要对ESC的数据访问进行封装,封装的目的是保证在MCU应用层能够通过通用的接口实现对不同类型从站ESC,不同接口PDI的访问。关于硬件抽象层的封装,SOES实现了所有硬件访问相关函数:应用层协议EtherCAT从站的目标是能够支持各类应用层协议,这其中最主要的是COE协议和基于COE的各类行规。此外还需要支持FOE,EOE,SOE等协议。COE:CANopen over EtherCAT,EtherCAT协议在应用层支持CANopen协议,并作了相应的扩充,CoE协议完全遵从CANopen协议。COE协议十分核心且复杂,在此不作过多介绍。EOE:EtherNet over EtherCAT,该协议支持EtherCAT能分段传递标准的以太网数据报文,使得EtherCAT协议同样能支持TCP/IP、UDP/IP协议。SOE:Servo Drive over EtherCAT。SERCOS是世界首个应用于伺服控制的协议。EtherCAT协议在应用层接口上兼容了这个协议,简称为SOE。SERCOS应用层协议为主站设计了信息接口,可以通过配置EtherCAT过程数据报文,实现周期性传递伺服驱动器的数据。FOE:File Access over EtherCAT。该协议可以使用EtherCAT总线上传、下载固件,刷新从站的固件。并且可以通过命令行工具加载或存储文件。结合实际需求,COE和基于COE的行规协议CiA402等是必须实现的,FOE、EOE作为程序的扩展功能有必要实现,而SOE不是常用需求。动态PDO映射静态PDO映射是将PDO变量“写死”在从站中,对于实际应用场景是十分不友好的,例如某个机型的电机需要实时传输电机温度,但在另一个机型中不需要温度信息,如果使用静态PDO映射,为了提升传输效率,删除温度PDO,则需要修改代码,烧写固件,更新XML文件。这样会带来巨大的工作量。特别是基于CiA402的驱动器来说,经常要根据上位机软件的需求修改传输变量。动态PDO映射允许定制PDO以满足客户需求,TwinCAT和KPA studio等上位机软件都支持以勾选的形式动态配置PDO。为了使得上位机能够修改PDO assign,需要在xml中配置mandatory为false(SSC在EXCEL)中可以配置。动态PDO映射的基本原理是操作对象字典的0x1C12和0x1C13对象,这两个对象分别管理输出和输入的PDO映射。过程如下:将Ethercat状态机切换到PreOP状态,此状态可以用SDO来配置PDO映射;清除PDO指定对象的PDO映射对象,即设置0x1C12-00,与0x1C13-00为0;PDO映射对象无效,即对0x1600-0x1603/0x1A00-0x1A01的子索引设置为0;重新配置PDO映射内容;0x1600-01开始的是RxPDO内容,0x1A00-01开始的是TxPDO;设置PDO映射对象总数;写有效的PDO映射对象索引到PDO指定对象设置PDO指定对象的总个数,即将映射对象个数写入到1C12-00h和1C13-00h转换Ethercat状态机到安全操作以上,配置的PDO映射将有效。分布时钟EtherCAT各个从站得到帧后会进行处理或者转发,这需要一定的微小时间。但当需要经手的从站多,或者数据量大的时候,积少成多会导致较大的延迟,并且电缆线内信号传输也占有一定的延时时间。分步时钟可以使所有的EtherCAT设备使用相同的系统时间,从而控制各设备的任务的同步执行,支持分布式时钟的从站称为DC从站。为使各个从站的参考时钟达到绝对同步,主站会计算各个从站的偏移时间,这个值会写入对应从站的系统时间偏移寄存器。在从站端,分布时钟由ESC芯片实现,ESC为从站控制微处理器提供同步的中断信号和时钟信息,分布时钟单元可以产生两个同步信号SYNC0和SYNC1,用于给应用层提供中断或直接触发的输出数据更新。MCU可以通过ESC的中断信息和时间漂移寄存器的值更新本地系统时钟。分布时钟是从站的重要功能,SSC和SOES都实现了分布时钟,可以参考这两者的设计实现该功能。SDK目前从站代码开发主要有两种方式: 基于现有的代码进行移植:目前对于成熟的ESC(ET1100、LAN9252、AX58100)都有比较成熟的解决方案。但移植仍然要求对代码较为熟悉,如果添加新功能较为困难,综合来看较为麻烦;基于从站软件生成:SSC,SOES和KPA都提供了对应的从站代码生成器,但是SSC是针对自己的的PIC32芯片的,仍然需要手动移植代码;SOES和KPA的从站软件都属于商用软件需要较高的授权费;因此通过一个SDK简化从站开发流程是有必要的,参考SOES的slave editor,SDK所需的功能如下:从站基本信息:允许通过界面添加XML的必要信息,例如vendor ID,product ID等;数据链路层配置,允许通过界面配置FMMU,SM同步管理器和邮箱;PDI的配置:允许通过界面配置PDI相关寄存器;PDO的配置:这是从站软件的核心,允许通过界面直接添加和管理PDO,由于PDO是从站最重要的功能,此功能将极大简化从站开发过程;代码生成和XML的生成。SOES的上位机软件从站性能从站响应时间从站响应时间是从站的性能指标,指从发送一帧数据,经过每个从站ESC的处理,到主站接收到这帧数据的时间。从站响应时间主要由硬件和网络结构,数据传输量决定,具体地:带宽:传输延时和带宽有关系,对于单个bit,从发送到确认,不考虑线路损耗的时间是(1/BandWidth)。假设EtherCAT网络的带宽是100Mbit/s,则每字节的传输延时是(1/100M)*8 = 80us;主站硬件延时:主站硬件同样存在延时,一般在几us左右;主站软件延时:主站软件一般会带来几微秒的延时,取决于主站的性能;从设备数量:每个MII/PHY接口的ESC会带来1us的延时,而EBUS接口的则只有0.3us;KPA studio的数据界面,在运行状态下可以查看从站响应时间。编辑于 2023-08-29 15:47・IP 属地浙江EtherCAT 总线驱动器赞同 2011 条评论分享喜欢收藏申请转载文章被以下专栏收录EtherCAT介绍工业以太网总线EtherCAT技
EtherCAT (学习笔记)-CSDN博客
>EtherCAT (学习笔记)-CSDN博客
EtherCAT (学习笔记)
最新推荐文章于 2024-01-16 16:03:36 发布
pwl999
最新推荐文章于 2024-01-16 16:03:36 发布
阅读量6.7w
收藏
1.3k
点赞数
209
分类专栏:
Motion Control
文章标签:
ethercat
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/pwl999/article/details/109397700
版权
Motion Control
专栏收录该内容
3 篇文章
75 订阅
订阅专栏
文章目录
1. 简介1.1 运动控制1.2 实时以太网1.3 EtherCAT
2. EtherCAT原理介绍2.1 实时性2.2 端口管理2.3 EtherCAT网络拓扑2.4 EtherCAT网络协议栈2.5 EtherCAT数据帧格式2.6 EtherCAT设备寻址方式2.7 分布式时钟(Distribute Clock)2.8 应用层(Application Layer)2.9 设备配置(Device Profile)2.10 主站设计2.11 从站设计
3. 应用层(Application Layer)3.13.2 EtherCAT Slave Implementation (从站实现)
4. 应用实例4.1 主站操作系统(RTAI)4.2 主站EtherCAT程序(IGH)4.3 主站应用开发(LinuxCNC)4.4 ET12004.5 从站程序设计4.6 实验测试
5. 工具5.1 TwinCAT5.2 LinuxCNC5.3 开源的EtherCAT Master
参考资料
1. 简介
1.1 运动控制
运动控制系统处理机械系统中一个或多个坐标上的运动以及运动之间的协调,实现精确的位置控制、速度和加速度控制、转矩和力的控制等。
单轴的运动控制系统可分为开环、半闭环和闭环伺服系统。
多轴运动控制系统可以分成点位控制、连续轨迹控制和同步控制。
典型的运动控制系统,从结构上看,包括上位机控制窗口、运动控制器、驱动器、电机以及测量反馈系统等几个部分组成:
1.2 实时以太网
实时以太网(RTE, Real Time Ethernet)是常规以太网技术的延伸,以便满足工业控制领域的实时性数据通信要求。目前,国际上有多种实时工业以太网协议,根据不同的实时性和成本的要求使用不同的原理,大致可以分为以下三类:
(1)基于TCP/IP实现的工业以太网仍使用TCP/IP协议栈,通过上层合理的控制来解决通信过程中的不确定因素。这种方式具有较高的传输速率,适应于大量数据通信,更适合作为网关和交换设备的应用,不能实现很好的实时性。常用的通信控制方法有:合理调度,减少冲突的概率;定义帧数据的优先级,为实时数据分配最高优先级;使用交换式以太网等。使用这种方式的典型协议有Modbus/TCP和Ethernet/IP等。(2)基于以太网实现的工业以太网仍然使用标准的、未修改的以太网通信硬件,但是不适用TCP/IP来传输数据。它使用特定的报文进行传输。TCP/IP协议栈能使用时间控制层分发一定的时间片来利用网络资源。该类协议主要有Ethernet Powerlink, EPA C Ethernet for Plant Automation ), PROFINET IRT等。通过这种方式可以实现较好的实时性。(3)通过修改以太网协议实现的工业以太网,实现应答时间小于lms的硬实时,从站使用特定的硬件实现。由实时MAC控制实时通道内的通信,从根本上避免报文间的冲突。非实时数据依然能在通道中按原协议通信。典型协议有德国倍福的EtherCAT、西门子的PROFINET IRT等。
1.3 EtherCAT
德国BECKHOFF自动化公司于2003年开发出的EtherCAT实时以太网技术突破了其他以太网解决方案的系统限制:通过该项技术,无需接受以太网数据包,将之解码,然后再将过程数据复制到各个设备。
2. EtherCAT原理介绍
EtherCAT从站设备在报文经过其节点时读取相应的数据报文,同样输入数据也是在报文经过时插入到报文中。整个过程报文只有几纳秒的时间延迟,实时性获得极大提高
EtherCAT作为一种工业以太网总线,充分利用了以太网的全双工特性。使用主从通信模式,主站发送报文给从站,从站从中读取数据或将数据插入至从站。
主站可使用标准网卡实现,从站选用特定的EtherCAT从站控制器ESC(EtherCAT Slave Controller)或者FPGA实现,
主要完成通信和控制应用两部分功能,EtherCAT物理层选用标准以太网物理层器件。
从站能将收到的报文直接处理,并读取或插入有关的数据,再将报文发送给下一个EtherCAT从站。最末尾的EtherCAT从站返回处理完全的报文,然后由第一个从站发送给主站。整个通信过程充运行于全双工模式下,TX线发出的报文又通过RX线返回给主站:
2.1 实时性
数据包刷新时间的计算
数据包中所有从站的 Process Datarocess Datarocess Data rocess Data rocess Data rocess Datarocess Data数据 决定了数据包的长度。
一个Ethernet thernet数据包最小84 字节,不足 84 字节会补齐84 字节。由于EtherCAT Frame中有一些公共开销, 84 字节的数据包最多含18字节的过程数据。考虑到数据包必须经过每个从站两次才能回到主站,所数据包以固定的波特率100 Mbps在网络上传输两次的时间 这就是它的总线刷新时间 。
1.基于这个原则,以包含 1000路开关量信号的数据包为例,计算过程如下:
过程数据长度:1000/8=125Bytes
数据包长度:84-18+125=191Bytes=191*8 Bit= 1528 Bit
总线刷新时间:(1528Bit/100,000,000 Bps)*2=15.28us * 2 = 30.56us
注意,通常的数字量模块, 都是单纯的输出或者输入模块,而不是混合模块。所以 1000 个数字 量信号, Frame 中就会分配 125 字节。
2.再以包含100个EtherCAT伺服驱动器过程数据的EtherCAT数据包为例,假如每个伺服的过程数据只包括控制字(2字节)、状态字(2字节)、目标位置(4字节)、实际位置(4字节),其总线刷新时间的计算过程如下:
过程数据长度:100*(2+4)=600 Byte。
数据包长度:84-18+600=1266 Byte =671*8 Bit =5328 Bit
总线刷新时间:(5328 Bit/100,000,000 Bps) *2=100.656µs
注意,Frame中只为一个伺服分配了6个字节,这是因为根据Beckhoff公司的控制软件TwinCAT中关于EtherCAT的默认设置是从站的Input和Output使用同一数据段,所以数据包进入伺服驱动器时该数据段存放的是控制字和目标位置,而出来时则存放伺服的状态字和实际位置。
以上两个数据30.56µs和101.28 µs就是EtherCAT官方宣传资料中,刷新1000个数字量需要30µs,刷新100个伺服轴只需要100µs的数据由来。实际上,根据从站的类型、是否包含分布时钟、是否启用时钟同步、时钟同步的参数设置不同,在数据包中有可能还会增加8-12字节用于传输同步时钟值,以及相应的为每个从站增加一个Bit的标记等等,会增加几个微秒的刷新时间,暂且忽略不计。
以上计算只是数据包传输需要的理论时间,实际上,数据包经过每个从站会产生短暂的硬件延时。100M超五类网线接口的从站延时约1µs,而EBus的IO模块类从站延时约0.3µs,在毫秒级以下的控制任务中如果从站数量较多,这个时间也相当可观,计算刷新周期时应该考虑进去。
2.2 端口管理
一个从站控制器最多可以有4个端口,如果一个端口关闭了,控制器主动连接下一个端口。端口可以随着EtherCAT命令主动的打开或者关闭。逻辑端口设置决定了EtherCAT帧的处理和发送顺序。
2.3 EtherCAT网络拓扑
所有数据帧在网络中以一种“逻辑闭环”的方式传播,与网络的硬件拓朴无关,无论它是链式、菊花链、星形还是树形拓朴。
所有数据帧都由Master发出,以事前严格定义的顺序,依次经过网络上的所有从站,走过一个完整的闭环后回到Master 。 所有数据帧通过从站中的 EtherCAT Processing Unit (EtherCAT处理单元)只有 1 次。
线型拓扑:
任意数目的设备成线型连接 最多65535个设备
数据处理链型拓扑 带有分支线的数据处理链型拓扑 树型拓扑: 实时星型拓扑: 冗余线缆
选择冗余电缆可以满足快速增长的系统可靠性需求,以保证设备更换时不会导致网络瘫痪。您可以很经济地增加冗余特性,仅需在主站设备端增加使用一个标准的以太网端口(无需专用网卡或接口),并将单一的电缆从总线型拓扑结构转变为环型拓扑结构即可(见图7)。当设备或电缆发生故障时,也仅需一个周期即可完成切换。因此,即使是针对运动控制要求的应用,电缆出现故障时也不会有任何问题。
EtherCAT也支持热备份的主站冗余。由于在环路中断时EtherCAT从站控制器芯片将立刻自动返回数据帧,一个设备的失败不会导致整个网络的瘫痪。例如,拖链设备可以配置为分支拓扑以防线缆断开。
2.4 EtherCAT网络协议栈
CoE(Can over EtherCAT)
PDO(Process Data Object 过程数据对象)
SDO(Service Data Object 服务数据对象)
PDI(Process Data Interface 过程数据接口)(uC, SSI, I/O)
ESM(EtherCAT State Machine)
ESI(EtherCAT Slave Information) (XML device description)
ENI(EtherCAT Network Information)
CTT(Conformance Test Tool 一致性测试工具)
SM(SyncManagers 同步管理器)
MDP(modular device description 模块化设备描述 )
2.5 EtherCAT数据帧格式
EtherCAT数据直接嵌入在以太网数据帧中进行传输,只是采用了一种特殊的帧类型,该类型为Ox88A4, EtherCAT数据帧结构如图所示:
EtherCAT数据包由数据头和数据实体两部分组成,EtherCAT数据头包含2个字节,每个数据包里面可以只包含一个EtherCAT子报文,也可以包含多个子报文;一个EtherCAT子报文对应着一个从站,因此一个EtherCAT数据包可以操作 多个EtherCAT从站,相应的数据长度在44-1498字节之间,EtherCAT数据帧结构定义: 类型 字段:
EtherCAT子报文结构定义:
地址区 字段
EtherCAT 寻址:
EtherCAT 通信的实现是通过由主站发送至从站的 EtherCAT 数据帧来完成对从站设备内部存储区的读写操作, EtherCAT 报文对 ESC 内部存储区有多种寻址操作方式,从而可以实现多种通信服务。EtherCAT 段内寻址有设备寻址和逻辑寻址两种方式。
设备寻址是面对一个从站进行读写操作。
逻辑寻址是面向过程的数据操作, 实现同一报文读写多个从站设备的多播功能。
具备全部寻址方式的从站称为完整性从站,只具备部分寻址方式的从站则称为基本从站。
命令 字段
不同命令通过信息传输系统最优化对所有存取方法的读写
WKC 字段
Working Counter。如果成功寻址了EtherCAT设备,并且成功执行了读操作,写操作或读/写操作,则工作计数器将递增。 可以为每个数据报分配一个工作计数器值,该值是根据预期报文通过所有设备数来设置的。 通过将工作计数器的预期值与所有设备通过后的实际值进行比较,主站可以检查EtherCAT数据报是否已成功处理。
同步管理器
2.6 EtherCAT设备寻址方式
在EtherCAT的每个子报文中,有32位空间用于对EtherCAT设备进行寻址。寻址方式有四种,分别为:
位置寻址
位置寻址方式是根据从站的连接顺序,即物理位置实现的。在报文头的32bit地址中,前16bit的Position用于存放地址值,Offset用于存放ESC逻辑寄存器或者内存地址。报文每经过一个从站设备,其Position中的地址值加1。当一个从站接收到EtherCAT报文后,如果报文中的地址值为0,则该报文就是这个从站要要接收的报文。
在上图中,如果需要总线上第8个设备响应报文,则主站需要将报文的地址设为0xFFF9,当报文经过第1个从站时,地址为0xFFF9,不等于0,第1个从站不会响应报文,报文地址加1,变为0xFFFA。当报文经过第2个从站时,地址为0XFFFA,不等于0,第2个从站不会响应该报文,报文地址加1,变为0xFFFB。以此类推,当报文到达第8个从站时,此时地址值为0x0000,当前从站将接收报文。
位置寻址(Position Address / Auto Increment Address)只应在启动EtherCAT系统时用于扫描现场总线,以后只能偶尔使用以检测新连接的从站。 如果由热连接或链接问题导致循环暂时关闭,使用位置寻址可能会出现问题。 在这种情况下位置地址被移位,并且,如错误寄存器的值到设备的映射变得不可能,因此不能定位故障链路。
节点寻址
在启动阶段,主站通常采用位置寻址方式对总线上的从站进行寻址,之后采用节点寻址方式。
在报文中,报文头的32bit地址,前16bit的Address用于存放站点地址值,Offset用于存放ESC逻辑寄存器或者内存地址。
在每个从站中站点地址保存在寄存器(0x0010) 中。
顺序寻址时,主站可以对每个从站的站点地址进行设置,也可以直接读取每个从站的的站点地址。
节点寻址方式的优点是,每个从站的地址与其在总线中的位置无关。在添加/删除从站,甚至是改变总线拓扑结构的时候都能对从站进行正确的访问。
上图是节点寻址方式的示意图。8个从站的地址与其在总线中的位置并没有关系。出于直观的目的,4台伺服驱动器的地址被设置为连续的,4个I/O模块的地址被设置为连续的,在实际中并没有这样的要求。
EtherCAT从设备可以有两个配置的站点地址,一个由主站分配(Configured Station Address),另一个存储在SII EEPROM,并且可以由从站应用程序更改(Configured Station Alias address)。
配置站点地址由主站在启动期间分配,并且不能由EtherCAT从站更改。 配置站别名地址存储在SIIEEPROM中,可由EtherCAT从站更改。 配置的站别名必须由主站启用。 如果节点地址(NodeAddress)与配置的站地址或配置的站点别名匹配,将执行相应的命令操作。
逻辑寻址
EtherCAT的第三种寻址方式是逻辑寻址,首先需要了解的是FMMU。
FMMU(Fieldbus Memory Management Units)
FMMU称为总线内存管理单元,它存在与从站芯片ESC中,负责对从站物理地址与主站逻辑地址进行翻译并建立映射关系。主站在总线启动过程中对FMMU进行配置,内容包括:
• 逻辑地址的起始地址
• 数据长度(按跨字节数计算)
• 逻辑地址的起始位
• 逻辑地址的终止位
• 从站物理地址的起始地址
• 从站物理地址的起始位
• 操作类型(只读、只写、读写)
• 使能
在报文中,使用报文头的32bit地址的全部,用来表示大小为4GB的逻辑地址空间。 以上图为例,FMMU将逻辑地址中0x00012345第2位开始的,到0x00012346以第2位终止的区域,与从站物理地址中0x0010第0位开始的区域进行映射。
当从站收到来自主站的报文时,会检查报文中的地址是否与FMMU中的地址相符,如果有,将根据操作类型进行读写操作。
这种寻址方式的优点是,在主站想对每个从站进行访问的时候,只需要对逻辑空间中的地址进行操作,而无须关心该地址对应的从站物理地址,减轻了主站的负担。
所有器件读取和写入相同的逻辑4 GB地址空间(EtherCAT数据报中的32位地址字段)。 从器件使用映射单元(FMMU,现场总线存储器管理单元)将数据从逻辑过程数据映像映射到其本地地址空间。 在启动期间,主器件配置每个从器件的FMMU。 从站使用FMMU的配置信息知道逻辑过程数据映像的哪些部分必须映射到哪个本地地址空间。
逻辑寻址支持逐位映射。 逻辑寻址是一种强大的机制,可以减少过程数据通信的开销,因此通常用于访问过程数据。
当从站设备收到的EtherCAT报文带有逻辑寻址标志位时,从站设备将检查自身是否有相应的FMMU单位地址与之匹配。
总结:EtherCAT使用三种方式对设备进行寻址,在启动过程中,使用顺序寻址方式为从站分配节点地址,然后通过节点寻址方式配置从站寄存器,将逻辑地址与从站物理地址进行映射,之后就可以使用逻辑寻址方式进行过程数据交换了。
Broadcast寻址
每个EtherCAT从站都被寻址。
使用广播寻址。 如果从站的预期是相同的,用于所有从站的初始化和检查所有从站的状态。每个从器件具有一个16位Local地址空间:
地址范围0x0000:0x0FFF专用于EtherCAT寄存器,
地址范围0x1000:0xFFFF用作过程数据RAM
通过EtherCAT数据报的偏移字段寻址,过程数据。
2.7 分布式时钟(Distribute Clock)
通过分布式时钟精确的调整,系统可达到精确的同步。
外部时钟同步IEEE1588 EtherCAT设备同步 定义系统时间
定义一个参考时钟:
一个EtherCAT从站被当做参考时钟使用
参考时钟循环的发布它的时钟
参考时钟根据一个全局参考时钟 IEEE1588
2.8 应用层(Application Layer)
应用层AL(Application Layer) 为用户与网络之间提供接口,应用层在EtherCAT 通信协议层次结构中是与用户联系最紧密最直接的一层,它可以直接与用户进行交互,实现面对具体的应用程序和控制任务等功能, EtherCAT 应用层为各种服务协议与应用程序之间定义了接口, 使其能够满足应用层所要求的各种协议共同工作的需求。
EtherCAT 作为网络通信技术,支持CAN open 协议中的CiA402,以及 SERCOS 协议的应用层( 即 CoE 和SoE)等多种符合行规的设备和协议。
EtherCAT状态机 设备和网络的启动
邮箱接口和协议 设备的存取变量 异步传输
协议:
EOE: Ethernet over EtherCAT
COE: CANopen over EtherCAT
FOE: Filetransfer over EtherCAT
SOE: Servo Drive over EtherCAT
从站信息接口 设备特征和配置信息
EtherCAT状态机
状态机构建于数据链路层 定义EtherCAT从站设备一般信息状态 指定对EtherCAT从站设备启用网络时初始化和错误处理 状态和主从站之间通信关系相一致 从站设备的请求状态和当前状态反应于应用层和应用层注册中
定义了五种状态:
Init // 应用层没有数据交互,主站对数据传输信息注册有同路
Pre-Operational // 应用层上的邮箱通信。没有过程数据交互
Safe-Operational // 应用层上的邮箱通信。过程数据通信,但是仅仅是输入被评估,输出置于Safe状态
Operational // 输入和输出都是有效的
Bootstrap // 定义了固件更新。是可选的,但是在固件必须要更新时推荐选择
// 只能和init进行状态间转换,没有过程数据通信,通过应用层的邮箱进行通信,根据需要的情况对邮箱进行配置,只能使用FoE协议。
从站设备的请求状态和当前状态反应于应用层控制和应用层注册中:
应用层控制(0x0120) 初始化设备状态机的状态转换
应用层状态(0x0130) 设备状态机的实际状态
应用层状态代码(0x0134) 错误原因或者其他状态代码
邮箱传输
交换变量数据的标准方式 邮箱接口是可选择的,但是推荐使用 如果过程数据是可设置的,或者有其他的非周期性服务,必须邮箱通信 全双工能力 从站可以发起一个数据交互 预留两个同步管理器通道: Sync Manager 0(主站到从站),Sync Manager 1(从站到主站) 数据交互的早期阶段,邮箱方式是可利用的(State Pre-Operational) 支持多种协议的能力
邮箱通信协议的类型:
EOE: Ethernet over EtherCAT // 通过EtherCAT传输的标准以太网帧
COE: CANopen over EtherCAT // 访问CANopen对象字典和它的对象,CANopen紧急事件和事件驱动的PDO消息
FOE: Filetransfer over EtherCAT // 下载上传固件和其他的一些文件
SOE: Servo Drive over EtherCAT // 存取伺服轮廓检验(IDN)
从站信息接口
强制从站信息接口SII(Slave Information Interface)由所有能被持久保持的对象组成 信息被存储于一个EEPROM,EtherCAT从站控制器和EEPROM之间有一个SPI接口。
SII包括:
boot设置数据
设备一致性
vender id,产品序列号,修正号,serial no
和CoE对象0x1018里,相同的信息
应用程序信息数据
额外的一些数据
AL Status Code(Application Layer Status Code)
Application Layer: Describes the highest layer of the EtherCAT slave stack which includes the EtherCAT State Machine, error handling, Mailbox protocol handling, slave application.
此可选属性由应用程序控制,并报告由AL的状态控制事例检测到的最后错误或ID值。AL(应用层)状态代码给出从机进入错误状态的原因。 如果错误标志(寄存器0x0130:04)为TRUE,则应提供AL状态代码.
2.9 设备配置(Device Profile)
设备行规描述了设备的应用参数和功能特性,如设备类别相关的机器状态等。现场总线技术已经为I/O设备、驱动、阀等许多设备类别提供了可利用的设备行规。用户非常熟悉这些行规以及相关的参数和工具,因此,EtherCAT无需为这些设备类别重新开发设备行规,而是为现有的设备行规提供了简单的接口。该特性使得用户和设备制造商可以轻松完成从现有的现场总线到EtherCAT技术的转换过程。
EtherCAT实现CANopen (CoE)
CANopen©设备和应用行规广泛用于多种设备类别和应用,如I/O组件、驱动、编码器、比例阀、液压控制器,以及用于塑料或纺织行业的应用行规等。
EtherCAT可以提供与CANopen机制[7]相同的通讯机制,包括对象字典、PDO(过程数据对象)、SDO(服务数据对象),甚至于网络管理。
因此,在已经安装了CANopen的设备中,仅需稍加变动即可轻松实现EtherCAT,绝大部分的CANopen©固件都得以重复利用。并且,可以选择性地扩展对象,以便利用EtherCAT所提供的巨大带宽。
EtherCAT实施伺服驱动 设备行规IEC 61491 (SoE)
SERCOS interface™ 是全球公认的、用于高性能实时运行系统的通讯接口,尤其适用于运动控制的应用场合。
用于伺服驱动和通讯技术的SERCOS™框架属于IEC 61491标准[8] 的范畴。该伺服驱动框架可以轻松地映射到EtherCAT中,嵌入于驱动中的服务通道、全部参数存取以及功能都基于EtherCAT邮箱(参见图12)。在此,关注焦点还是EtherCAT与现有协议的兼容性(IDN的存取值、属性、名称、单位等),以及与数据长度限制相关的扩展性。过程数据,即形式为AT和MDT的SERCOS™数据,都使用EtherCAT从站控制器机制进行传送,其映射与SERCOS映射相似。并且,EtherCAT从站的设备状态也可以非常容易地映射为SERCOS™协议状态。EtherCAT从站状态机可以很容易地映射到SERCOS™协议的通信阶段。
EtherCAT为这种在CNC行业中广泛使用的设备行规提供了先进的实时以太网技术。这种设备行规的优点与EtherCAT分布时钟提供的优点相结合,保证了网络范围内精确时钟同步。可以任意传输位置命令,速度命令或扭矩命令。取决于实现方式,甚至可能继续使用相同的设备配置工具。
EtherCAT实现以太网(EoE)
EtherCAT技术不仅完全兼容以太网,而且在“设计”之初就具备良好的开放性特征——该协议可以在相同的物理层网络中包容其它基于以太网的服务和协议,通常可将其性能损失降到最小。对以太网的设备类型没有限制,设备可通过交换机端口在EtherCAT段内进行连接。以太网帧通过EtherCAT协议开通隧道,这也正是VPN、 PPPoE (DSL) 等因特网应用所普遍采取的方法。EtherCAT网络对以太网设备而言是完全透明的,其实时特性也不会发生畸变(参见图13)。 EtherCAT设备可以包容其它的以太网协议,因此具备标准以太网设备的一切特性。主站的作用与第2层交换机所起的作用一样,可按照编址信息将以太网帧重新定向到相应的设备。因此,集成万维网服务器、电子邮件和FTP 传送等所有的因特网技术都可以在EtherCAT的环境中得以应用。
EtherCAT实现文件读取(FoE)
这种简单的协议与TFTP类似,允许存取设备中的任何数据结构。因此,无论设备是否支持TCP/IP,都有可能将标准化固件上载到设备上。
ADS over EtherCAT (AoE)
ADS over EtherCAT (AoE)是由EtherCAT规范定义的客户端-服务器邮箱协议。尽管CoE协议提供了详尽的描述,但AoE则更适合路由与并行服务的应用:通过网关设备访问子网络,如EtherCAT至CANopen® 或EtherCAT至IO-Link™ 网关设备。AoE使EtherCAT主站应用(如PLC程序)可以访问所属CANopen® 或 IOLink™从站的各个参数。AoE路由机制开销远低于因特网协议(IP)所定义的开销,并且发送方和接收方寻址参数始终包含在AoE报文中。因此,EtherCAT主站和从站端的实施更为精简。AoE也通过EtherCAT自动化协议(EAP)进行非周期通信的标准化,从而为上位机MES系统或主计算机、EtherCAT主站及其从属的现有设备之间提供无缝通信。同时,AoE也提供了从远程诊断工具获取EtherCAT网络诊断信息的标准化方法。
2.10 主站设计
EtherCAT可以在单个以太网帧中最多实现1486字节的分布式过程数据通讯。其它解决方案一般是,主站设备需要在每个网络周期中为各个节点处理、发送和接收帧。
而EtherCAT系统与此不同之处在于,在通常情况下,每周期仅需要一个或两个帧即可完成所有节点的全部通讯,因此,EtherCAT主站不需要专用的通讯处理器。主站功能几乎不会给主机CPU带来任何负担,轻松处理这些任务的同时,还可以处理应用程序,因此EtherCAT无需使用昂贵的专用有源插接卡,只需使用无源的NIC卡或主板集成的以太网MAC设备即可。EtherCAT主站很容易实现,尤其适用于中小规模的控制系统和有明确规定的应用场合。
例如,如果某个单个过程映像的PLC没有超过1486 字节,那么在其周期时间内循环发送这个以太网帧就足够了。因为报文头运行时不会发生变化,所以只需将常数报文头插入到过程映像中,并将结果传送到以太网控制器即可。
EtherCAT映射不是在主站产生,而是在从站产生(外围设备将数据插入所经以太网帧的相应位置),因此,此时过程映像已经完成排序。该特性进一步减轻了主机CPU的负担。可以看到,EtherCAT主站完全在主机CPU中采用软件方式实现,相比之下,传统的慢速现场总线系统通过有源插接卡方可实现主站的方式则要占用更多的资源,甚至服务于DPRAM的有源卡本身也将占用可观的主机资源。
系统配置工具(通过生产商获取)可提供包括相应的标准 XML 格式启动顺序在内的网络和设备参数。
已经在各种实时操作系统上实现了EtherCAT主站,包括但并不限于:eCos, INtime, MICROWARE OS-9,MQX, On Time RTOS-32, Proconos OS, Real-Time Java, RT Kernel, RT-Linux, RTX, RTXC, RTAI Linux,PikeOS, Linux with RT-Preempt, QNX, VxWin + CeWin, VxWorks, Windows CE, Windows XP/XPE with CoDeSys SP RTE, Windows NT/NTE/2000/XP/XPE/Vista with TwinCAT RTE, Windows 7 and XENOMAI Linux. 可以获得开源主站协议栈,作为示例代码或商业软件。也有各种公司提供各种硬件平台上的实施服务。可以在EtherCAT网站上的产品区找到快速增长的供应商信息[1]。
另一种EtherCAT主站的实现方式是使用样本代码,花费不高。软件以源代码形式提供,包括所有的EtherCAT主站功能,甚至还包括EoE(EtherCAT实现以太网)功能(见图15)。开发人员只要把这些应用于Windows环境的代码与目标硬件及所使用的RTOS加以匹配就可以了。该软件代码已经成功应用于多个系统。
2.11 从站设计
从站EtherCAT Processing Unit 总是位于 Port 0 之后其它端口之前,并在数据帧传输的过程中提取和插入数据:
DPRAM: 双端口存储器 Dual-Ported RAM,可以分别从主站及本地微处理器uC访问。访问 ESC 的 Dual-Ported RAM 读出 并/或 写入数据。
从器件具有一个16位Local地址空间:
地址范围0x0000:0x0FFF专用于EtherCAT寄存器,
地址范围0x1000:0xFFFF用作过程数据RAM
SyncManagers 阻止主站和从站微处理器(uC)同时访问 ESC存储区,确保数据的一致性
→ 含周期性数据 (Process Data) 和非周期性数据 (Mailbox)
FMMUs 为Lxx数据报文完成逻辑地址到物理地址的转换
→ 仅对于周期性数据 (Process Data)
从站的SyncManagers 和 FMMU 是由主站在初始化阶段自动配置的,该配置基于每个从站的XML文件和整个网络的设置。
EtherCAT从站设备使用一个价格低廉的从站控制器芯片ESC。从站不需要微处理器就可以实现EtherCAT通信。可以通过I/O接口实现的简单设备可以只由ESC和其下的PHY,变压器和RJ45接头。给从站的过程数据接口是32位的I/O接口。这种从站没有可配置的参数,所以不需要软件或邮箱协议。EtherCAT状态机由ESC处理。ESC的启动信息从EEPROM中读取,它也支持从站的身份识别。
更复杂的可配置从站有使用一个CPU。这个CPU和ESC之间使用8位或16位并行接口或串行SPI接口。要求的CPU性能取决于从站的应用,EtherCAT协议软件在其上运行。EtherCAT协议栈管理EtherCAT状态机和应用层协议,可以实现CoE协议和支持固件下载的FoE协议。EoE协议也可以实施。
从站控制器通常都有一个内部的DPRAM(DUAL PORT RAM),并提供存取这些应用内存的接口范围:
串行SPI(串行外围接口)主要用于数量较小的过程数据设备,如模拟量I/O模块、传感器、编码器和简单驱动等。该接口通常使用8位微控制器,如微型芯片PIC、DSP、Intel 80C51等(见图16)。
8/16位微控制器并行接口与带有DPRAM接口的传统现场总线控制器接口相对应,尤其适用于数据量较大的复杂设备。通常情况下,微控制器使用的接口包括Infineon 80C16x、Intel 80x86、Hitachi SH1、ST10、ARM和TI TMS320等系列(见图16)。
32位并行I/O接口不仅可以连接多达32位数字输入/输出,而且也适用于简单的传感器或执行器的32位数据操作。这类设备无需主机CPU(见图17)。
PDO(过程数据对象)、SDO(服务数据对象)
报文通过从站控制器时,从站读取出相关命令并进行对应处理,数据处理通过硬件完成,延间约为100-_500ns,通信性能独立于MCU的响应时间。每个ESC最大有容量为64KB的可用的内存编址,能进行连续或同步的读写。多个EtherCAT命令数据可以被嵌入到一个以太网报文中,每个数据对应独立的设备或内存区。
EtherCAT极大提高了以太网的性能,比如操作1000个I/O信号的时间约为30微秒。单个报文至多容纳1486字节的过程数据,和12000位I/O信号相当,更新所需时间约为300微秒。控制100个伺服单元的时间约为100微秒。
在基于PC的主站中,一般使用网络接口卡NIC(Network Interface Card)其中的网卡芯片集成了以太网通信控制器和物理层数据收发器。但是在嵌入式主站中,通信控制器通常集成在微处理器中。
EtherCAT从站设备同时实现应用控制和数据通信两部分功能,其组成如图所示,由四部分组成:从站控制微处理器、EtherCAT从站控制器ESC芯片、物理层器件和其他应用层器件。
EtherCAT报文由从站控制器来处理,使用双端口存储区完成主从站间的数据交换。每个从站ESC在环路上按各自的顺序移位读写数据。当数据帧经过从站时,ESC从中读取发送给自己的命令数据并放到内部存储区,插入的数据又被从内部 存储区写到子报文中。
从站控制微处理器主要负责处理EtherCAT通信和完成控制任务。微处理器从ESC获取控制数据实现设备控制功能,并采样设备的反馈数据写入ESC。从站控制微处理器的选型根据设备控制任务,可以使用ARM或DSP; 8位、16位或32位的处理器。EtherCAT从站采用MII接口模式时,需要使用标准以太网物理层器件:物理层芯片PHY,隔离变压器等。采用EBUS接口时不需要任何其他芯片。
3. 应用层(Application Layer)
3.1
3.2 EtherCAT Slave Implementation (从站实现)
DPRAM (双端口存储器)size and number of SyncManagers(同步管理 )
The DPRAM is used for exchange of cyclic and acyclic data(循环和非循环的数据交换) via the EtherCAT network. SyncManagers ensure data consistency(保证数据的一致性) within the DPRAM.
Each ESC has 4kByte of registers (addresses 0x0000 to 0x0FFF) which are reserved for (EtherCAT and PDI communication) configuration settings(配置设置 ).
Mailbox(邮箱) and process data is exchanged via additional DPRAM (also called user memory用户存储器 ). EtherCAT allows addressing(编址) of user memory of up to 60kBytes. ASICs provide between 1kByte and 8kByte of DPRAM, IP Cores can be configured to provide the full 60kByte of user memory.
Application Note: The standard SyncManager configuration is(标准的同步管理配置)
- 1 SyncManager per acyclic data output (mailbox out, master to slave)
- 1 SM for acyclic data input (mailbox in, slave to master)
- 1 SM for cyclic data output (process data out, master to slave)
- 1 SM for cyclic data input (process data in, slave to master)
For process data, SM running in 3-buffer-mode(3缓存模式) need three times the length (3倍长度) of actual process data for physical memory(物理内存) . The following table shows a schema(体系结构,模式) of how to allocate(分配) the length for the 4 SM.
Table 5: DPRAM Size Calculation Example( DPRAM大小计算示例)
SyncManagerBuffer CountLength [Byte]Total length [Byte]SM0Output Mailbox1L_MbxOut1*L_MbxOutSM1Input Mailbox1L_MbxIn+ 1*L_MbxInSM2Outputs3L_Out (TxPDO)+ 3*L_OutSM3Inputs3L_In (RxPDO)+3*L_In----∑ DPRAM size
SyncManagers are enabled(开启) by the following settings of the master during network initialization(网络初始化) .
-Physical address of ESC(ESC物理地址)
-Data length (数据长度)
-SyncManager control input(同步管理控制输入) :
i. Operation mode【操作模式】 (mailbox-mode/3-buffer-mode)
ii. Access direction【访问方向:读或者写】 (Read direction/Write direction)
iii. Interrupt settings 【中断设置】 (Valid/Invalid 有效/无效 )
iv. SyncManager watchdog setting【同步管理看门狗定时器设置】 (Valid/Invalid)
v. SyncManager setting (Valid/Invalid)
The default values are set in the ESI (chapter 2.4.1); the master initializes the SyncManager using the values from the ESI.(默认值在 ESI中设置,主站初始化时调用 ESI中的值)
Syncmanagers(同步管理器)
同步管理器简称SM用来协调应用程序和主机的数据交互,同步管理器同步的是数据而非时间,同步管理器确保了应用程序和主机能够正确的写入或读取数据。同时同步管理器可以以中断的形式通知主机和应用程序发生的数据更新事件。
从站的ESC中包含多个同步管理器,每一个同步管理器都可以单独的配置:
同步管理器的配置中包括告知同步管理器其需要管理的内存地址的范围,管理内存的属性(属于读或写,属于邮箱数据或过程数据)。
所以每一种数据交互方式都会有一个同步管理器来管理,应用程序进行数据交互时,只需要更具不同的同步管理器就可以方便的区分数据的类型(PDO 或SDO、读或写)。从站在初始化时会读取SM管理器中的配置来确定数据的存放地址。
数据的交互主要有缓冲模式和邮箱模式。缓冲模式主要应用于周期性过程数据的传送。
Number of Fieldbus Memory Management Units (FMMUs)(现场总线储存管理单元)
In an EtherCAT network, the memory of all slaves can be compiled in the master(所有从站的储存都可以在主站中编辑) to a logical memory(逻辑内存) . This logical memory is managed by FMMUs to map(映射) logical addresses to physical addresses in the slavesFMMUs(逻辑内存通过 的管理和从站中的物理内存相对应) .
For the FMMU configuration in a device, each consistent output and each consistent input block needs one FMMU and an additional FMMU for mailbox status response is necessary. // 对于设备中的FMMU配置,每个一致的输出和每个一致的输入块都需要一个FMMU,并且还需要一个用于邮箱状态响应的附加FMMU。
Application Note: The standard configuration is one FMMU per each, cyclic output and cyclic input data block , optionally an additional one for mapping the mailbox response availability flag into process data (thus, no polling of mailboxes is necessary). If the outputs and inputs are groupede.g. like in Table 5, 3 FMMUs are configured, see Table 6. // 应用说明:标准配置是每个循环输出和循环输入数据块一个FMMU,还可以选择另外一个用于将邮箱响应可用性标志映射到过程数据中(因此,不需要轮询邮箱)。 如果输出和输入被分组,例如 如表5所示,配置了3个FMMU,请参阅表6。
Table 6: FMMU Configuration
FMMUAssigned SyncManagerNameLength [Byte]1SM2OutputsL_Out (TxPDO)2SM3InputsL_In (RxPDO)3SM0 & SM1Mbx-SM Status FlagsMbx In/Out Length
Distributed Clocks (DCs(同步) with other slave devices,分布式时钟 ) for synchronization
Evaluate if the device should support high precise(支持高精度) synchronization with other slave devices. If so, DCs should be supported by the selected ESC. Distributed Clocks refer to the DC function for EtherCAT slaves (chapter 1.3.5). The times held by slaves are adjusted with this mechanism(途径) and thus enable precise synchronization of the nodes(节点) in the EtherCAT network. // 评估设备是否应支持与其他从设备的高精度同步。 如果是这样,所选的ESC应该支持DC。 分布式时钟指的是EtherCAT从站的DC功能(第1.3.5章)。 通过这种机制可以调整从站保持的时间,从而实现EtherCAT网络中节点的精确同步。
EEPROM(电可擦只读存储器)
The EEPROM is mounted(安装) outside the ESC and connected via I2C with point-to-point link(点对点连接) . According to the size of the EEPROM the EEPROM_SIZE signal should be set. For more details, refer to the Knowledge Base, chapter 11.3 d electrical Interface EEPROM an(I 2C)". For EEPROM (SII) Enhanced Link Detection setting (加强连接检测设置) , refer to documentation of the ESC vendor. // EEPROM安装在ESC外部,并通过I2C与点对点链接连接。 根据EEPROM的大小,应设置EEPROM_SIZE信号。 有关更多详细信息,请参见知识库第11.3章“电气接口EEPROM和(I 2C)”。有关EEPROM(SII)增强链接检测设置,请参阅ESC供应商的文档。
Application Controller【应用控制】 (Host Controller, μ C)
If a local software application provides the device functionality, any 8 or 16 bit synchronous or asynchronous microcontroller(任何一个 8位或者 16位同步或者异步微控制器) can be connected to the ESC. The application controller communicates with the ESC via the Process Data Interfaces (PDI).
To adapt the application software on the host(为了和主站的应用程序相适应 ) controller to the ESC, sample software stacks(样本软件栈) are available for communication implementation(通讯的实现), e.g. the Slave Sample Code(从站样本代码) (SCC). If the device is a 32 bit digital I/O interface, no application controller or additional communication software is necessary. // 为了使主机控制器上的应用软件适应ESC,可以使用示例软件堆栈进行通信实现,例如从机样本代码(SCC)。 如果设备是32位数字I/O接口,则无需应用程序控制器或其他通讯软件。
In most cases, manufacturers(制造商) can use a familiar microcontroller type as application controller in the EtherCAT device(使用相似型号的微控制器作为应用控制使用在 EtherCAT设备中) . If application software already exists, e.g. for a different fieldbus, it can be used for the EtherCAT device as well. // 在大多数情况下,制造商可以在EtherCAT设备中使用熟悉的微控制器类型作为应用程序控制器。 如果应用软件已经存在,例如 对于不同的现场总线,它也可以用于EtherCAT设备。
The source code(源代码) for communications software on the host controller allocates(分配) about 70kByte. The following features are a typical configuration (referring to the Slave Sample Code):
EtherCAT State Machine (ESM), including error handling(错误处理)
Device diagnosis(设备诊断)
Master-Slave data synchronization (主从站之间的数据同步) with SyncManager event (no DCs)
Mailbox CoE
Object Dictionary (对象字典) (20 objects) for process data objects (过程数据对象)
CoE services, including CoE Info services(信息服务) , no segmented transfer (无分割转换)
A list of other available sample stacks can be obtained on the product section of the ETG website.
Application Layer Communication Protocols (应用层通讯协议)
In EtherCAT, several protocols are available (see chapter 1.3.6) for the application layer to implement (实施) the required specification of the product development(产品开发时所需的规格) . When to apply them is described here.
CAN application protocol (总线应用协议 )over EtherCAT(CoE) To provide acyclic data exchange as well as mechanisms to configure PDOs for cyclic data exchange in a structured way, CoE (with SDO-Info support) should be implemented.
Servo drive profile(伺服驱动配置文件) over EtherCAT(SoE) SoE is an alternative drive profile to the CiA402 drive profile. It is often used by drive manufacturers which are familiar with the SERCOS interface.
Ethernet(以太网) over EtherCAT(EoE) EoE is usually used to provide webserver interfaces(网络接口) via EtherCAT. It is also used for devices providing decentral standard Ethernet ports(分散生产方式的标准以太网端口) . ? File Access(文件存取组件) over EtherCAT(FoE) If the device should support firmware(固件)download via EtherCAT, FoE should be supported. FoE is based on TFTP. It provides fast file transfer and small protocol implementation.
ADS over EtherCAT(AoE)小协议实施 When planning to control the device via a .Net interface, AoE is an option to apply.
Application Note:An exemplary(典范) CoE implementation is shown below.
The user application runs the device specific software(设备专用软件) on the μ C to implement device features(实现设备功能特性 ). Sample source code(protocol stacks) offered by EtherCAT stack vendors can be used to develop this application or to adapt existing software to EtherCAT.
Application Note:EtherCAT Slave Stack Code (SSC,从站堆栈代码 ).
The SSC is a free sample codefrom Beckhoff(德国倍福自动化有限公司)(免费样本代码) which provides an interface to the ESC. For hardware independent software development(独立于硬件的软件开发) , the SSC runs on several evaluation kits(评估板) and can be customized(自定义) for implementation in accordance with the product specification. Figure 14 shows the SSC structure with the interfaces to the user specific device application(用户特定的设备应用) and the ESC.
Application Note:EtherCAT Slave Protocol Stack.(从站协议栈)
Hilscher(德国赫优讯公司) offers a Slave Control Stack based on its netX hardware withDual Port Memoryinterface (DPM,双端口记忆器 ) and it is available for the user application with an API. Figure 15 shows the protocol stack architecture(协议栈构架) with interfaces to the ESC and the user application.
Device Profiles(设备配置文件)
During network initialization(网络初始化期间) , parameter setup(参数设定) is necessary, where data does not need to be transmitted cyclically(周期性传输) but only during network initialization. Acyclic data exchange is done via mailbox protocols(非循环的数据传输通过邮箱协议) , usually via theCoEprotocol (see chapter 2.3.5). For devices with variable process data structure, the definition of a modular device description(MDP,模块化设备描述 ) is available. The MDP is described in the ETG.5001 Modular Device Profile Specification(说明书) . // 在网络初始化期间,必须进行参数设置,这些数据不需要循环传输,而仅在网络初始化期间需要传输。 非循环数据交换是通过邮箱协议(通常通过CoE协议)完成的(请参阅第2.3.5章)。 对于具有可变过程数据结构的设备,可以使用模块化设备描述(MDP)的定义。 EDP.5001模块化设备配置文件规范中描述了MDP。
The MDP is based on the object dictionary defined byCoE(CAN application protocol over EtherCAT). The object dictionary can be described as a two dimensional list(二维表) . Each list entry (每个表的入口) is identified(识别) by an index(指针,索引) (0x0000–0xFFFF) which represents an object. Each object can contain up to 255 subindices(分目录) , also called object entries. The object list is structured in different areas, see Table 7. // MDP基于CoE(基于EtherCAT的CAN应用协议)定义的对象字典。 对象字典可以描述为二维列表。 每个列表条目均由代表对象的索引(0x0000-0xFFFF)标识。 每个对象最多可以包含255个子索引,也称为对象条目。 对象列表的结构在不同区域中,请参见表7。
The idea of the MDP is to provide a basic structure for masters(为主站提供一个基本构架) and configuration tools(配置工具) to handle(处理) slaves with complex (modular) structure easily. The user has the advantage, that if the slave variables’(变量)s are sorted in an MDP style, he can find the different data types by identical patterns(相同的模式) . // MDP的思想是为主机和配置工具提供基本结构,以轻松处理具有复杂(模块化)结构的从机。 用户的优势在于,如果以MDP样式对从属变量进行排序,则他可以通过相同的模式找到不同的数据类型。
The MDP can be applied to various types of devices. It is applicable to multiple axis(多轴) servo drive system(伺服驱动系统) of various functionality groups(各种功能组) , such as positioning(位置控制) , torque(扭矩控制) and velocity control(转速控制) . It is further applicable to gateway(网关) between different fieldbuses, i.e., Profibus, DeviceNet. Modular devices are driven by two aspects: // MDP可以应用于各种类型的设备。 适用于各种功能组的多轴伺服驱动系统,例如定位,转矩和速度控制。 它进一步适用于不同现场总线之间的网关,即Profibus,DeviceNet。 模块化设备由两个方面驱动:
Comprise(包含) physically connectable modules and plurality of functionalities(多数功能) .
//包括物理上可连接的模块和多种功能。
Comprise plurality of channels(多数通道) directly being connected to the EtherCAT network.
//包括多个直接连接到EtherCAT网络的通道。
The MDP imagines slaves which consist of one or several modules. A module can be hardware which is connected/disconnected to a slave. Examples are gateways between EtherCAT and e.g. CANopen or a bus coupler(总线耦合器) between EtherCAT and a proprietary backbone bus(专用主干总线) . // MDP设想从站由一个或几个模块组成。模块可以是已连接/断开连接到从站的硬件。示例是EtherCAT与例如CANopen或EtherCAT与专有骨干总线之间的总线耦合器。
A module can also be a logical module which describes data sets, e.g. a drive which supports a velocity controlled mode and a position controlled mode –the MDP would describe the data as two modules, one for each mode.(把数据描述成 2种模式,每个对应相应的模式) // 模块也可以是描述数据集的逻辑模块,例如。一个支持速度控制模式和位置控制模式的驱动器-MDP将数据描述为两个模块,每个模式一个。
No matter what kind of module is described it needs more or less the same information categories(需要相对应的信息分类) , which are organized in the profile specific index range (Table 7). // 无论描述哪种模块,它都或多或少需要相同的信息类别,这些信息类别在配置文件特定的索引范围内进行组织(表7)。
Application Note:Modular Device Profile Structure(模块化设备配置文件结构) . // 应用说明:模块化设备配置文件结构。
Consider an MDP for a line of slave device modules which are connected together on a backbone layer(主干网层面) via LVDS and via a coupler(耦合器) with MII. Figure 16 shows a schema how to define device profiles(如何定义设备配置文件) such that a modular profile dictionary is set up for the slave device line. // 考虑一排从设备模块的MDP,这些设备通过LVDS和带有MII的耦合器在主干层上连接在一起。图16显示了一种模式,该模式如何定义设备配置文件,以便为从属设备线设置模块化配置文件字典。
For implementation of the profile (CiA402 Drive Profile) for servo drive, build the program with reference to the corresponding specifications(技术规格,说明书) . In this example, this would be the
ETG.6010 Implementation Directive(指令) for the CiA402 Drive Profile, and
IEC 61800-7 Drive Profiles and Mapping to EtherCAT.
4. 应用实例
由于EtherCAT实时工业以太网技术具有适用范围广、拓扑结构灵活、数据通信效率高、实时性强和同步性能好等多种优点,所以特别适用于实时性要求高、通信数据量大的运动控制系统。
控制系统设计采用“PC+运动控制器”的方案,构建多轴运动控制系统,采用PC机为主站、ARM+MCX314为从站处理器的架构。其核心插补与控制算法都放在工业PC中完成,运动控制器要求大为降低,其主要完成数字给定量到实际脉冲信号的转变。该控制系统方案的优势在于简化硬件设计工作,主要以标准化的硬件为主:上位机可以采用工业PC机、下位机使用开发的通用运动控制器,方便日后升级维护。工业PC机与运动控制器直接采用EtherCAT实时工业以太网进行通信连接。
4.1 主站操作系统(RTAI)
PC机部分软件以LinuxCNC为基础,往下LinuxCNC通过HAL(硬件抽象层)与EtherCAT主站驱动之间进行通信连接,然后EtherCAT主站通过以太网线给从站运动控制器发控制命令;往上利用LinuxCNC提供的Python调用接口和人机界面通信,数控系统人机界面采用PyQt开发;由于LinuxCNC需要运行实时任务,需要将普通操作系统进行改造。因此,目前的主要工作是对Linux系统进行实时性改造、安装EtherCAT主站、编写HAL模块、编写人机界面。
虽然EtherCAT主站程序能够安装在非实时操作系统上,但一般情况下会对主站进行实时性改造,而且LinuxCNC中有运行实时任务的需要,所以对Linux系统进行实时性改造迫在眉睫。众所周知,Linux系统本质上是一个分时操作系统,不是一个实时操作系统。Linux系统实时性不强使其在嵌入式应用中有一定的局限性,受内核可抢占性、进程调度方式、中断处理机制、时钟粒度、虚拟内存管理等几个方面的制约。
根据实时性系统要求以及Linux的特点和性能分析,对标准Linux实时性的改造存在多种方法,较为合理的两大类方法为:直接修改Linux内核源代码和双内核法。
1.直接修改Linux内核源代码:对Linux内核代码进行细微修改并不对内核作大规模的变动,在遵循GPL协议的情况下,直接修改内核源代码将Linux改造成一个完全可抢占的实时系统。核心修改面向局部,不会从根本上改变Linux内核,并且一些改动还可以通过Linux的模块加载来完成,即系统需要处理实时任务时加载该功能模块,不需要时动态卸载该模块。这种方法存在的问题是:很难百分之百保证,在任何情况下,GPOS(通用操作系统)程序代码绝不会阻碍RTOS的实时行为。也就是说,通过修改Linux内核,难以保证实时进程的执行不会遭到非实时进程所进行的不可预测活动的干扰。2.双内核法:双内核法是在同一硬件平台上采用两个相互配合,共同工作的系统核心,通过在Linux系统的最底层增加一层实时核心来实现。其中的一个核心提供精确的实时多任务处理,另一个核心提供复杂的非实时通用功能。其优点是可以做到硬实时,并且能很方便地实现一种新的调度策略。目前采用这种方案的主要有RTAT,RT-Linux和Xenomai。本课题采用RTAI实时包的方式完成对Linux系统的实时性改造,如图所示。
RTAI(实时应用接口)是Linux内核的一个实时扩展,RTAI是基于ADEOSC Adaptive Domain Environment for Operating System)实现,ADEOS位于Linux系统和硬件之间管理硬件中断,并控制实时内核和Linux内核的优先级,其中实时内核优先级高于Linux内核优先级。
RTAI安装:
1.下载RTAI压缩包并解压到urs/src目录下,输入命令:
cd /usr/src
sudo tar -bzip2 -xvf rtai一3.8.tar.bz2
2.下载Linux内核压缩包并解压到urs/src目录下,输入命令:
sudo cp suoxd/linux-2.6.37.1.tar.bz2 /usr/src
sudo tar -bzip2 -xvf linux一2.6.32.2.tar.bz2
3.利用RTAI源码中的文件给内核打补丁,未安装p atch需安装patch后,输入命令:
sudo patch -pl
4.配置内核,Linux2.6.32引入新的方式用于简化kernel的配置,使用命令拷贝当前配置,省去很多繁琐的内核配置选项。
5.安装内核模块,输入命令:
sudo make clean
sudo make
sudo make modules
sudo make modules install
sudo make install
6.配置RTAI,下载安装MESA库文件和EFLTK包,然后进入RTAI文件夹,执行配置,输入命令:
cd /usr/src/rtai
sudo make config
7.编译并安装RTAI,命令行窗口的RTAI安装结果如图4-2所示,输入命令:
sudo make
sudo make install
8.RTAI内核延时测试,利用RTAI源码包中的测试案例进行测试,测试结果如下:
cd /usr/realtime/testsuite/user/latency
sudo ./run
9.RTAI内核抢占实现测试,测试结果如图4-4所示,输入命令行:
cd /usr/realtime/testsuite/user/preempt
sudo ./run
4.2 主站EtherCAT程序(IGH)
本控制系统EtherCAT主站以实时Linux操作系统为基础,在Linux环境下开发主站有两方面优势,一方面Linux为开源系统,方便对底层进行修改;另一方面便于进行嵌入式移植。Linux下的EtherCAT主站架构如图所示:
Linux操作系统可分为内核态和用户态。内核态是操作系统的核心,负责进程管理、内存管理、进程间通信和设备管理和驱动等,实时性要求高。用户态主要运行人机交互、数据监控等实时性要求不高的程序。
EtherCAT主站模块运行在内核态,可支持一个或多个EtherCAT主站,且同时提供应用接口和设备接口。用户通过应用接口访问主站,通过设备接口连接设备到指定主站。EtherCAT的以太网设备驱动模块通过主站设备接口与主站连接,EtherCAT设备协议可直接由以太网帧传送,因而主站能同时并行处理EtherCAT数据帧和通用以太网通信。
在Linux上安装EtherCAT主站程序,这里选择EtherLab开发的IgH EtherCAT Master,首先下载主站安装文件gHEtherLab.tar.bz2,下载文件后解压缩进入含有Makefile文件的目录安装主站,输入命令:
make ethercatMaster
make ethercatMasterinstall
sudo /etc/init.d/ethercat start
ethercat master
若最后两条指令运行正常则说明主站安装成功。
4.3 主站应用开发(LinuxCNC)
LinuxCNC是一款运行在Linux平台下的实时开源数控软件。起源于美国国家标准与技术研究院的增强型运动控制器EMC (Enhanced Machine Controller)研究项目,用于机床的数控系统。经过十几年的发展,LinuxCNC系统广泛用于冲床、车床、3D打印机、激光切割机、等离子切割机、机器人手臂等领域。其主要优点有:提供多个标准化的用户界面、用户也可以采用自主开发的GUI、自带G代码解析器、支持伺服电机控制步进电机开环控制、运动控制器功能强大、支持非笛卡尔坐标运动系统、采用2.4或2.6的Linux内核支持RT-Linux或RTAI实时补丁。LinuxCNC源代码可以免费下载,安装在Linux系统上。LinuxCNC软件架构如图所示。
LinuxCNC是一个模块化设计的软件,大致可以分为以下四个主要模块:运动控制器(EmcMot)、数字I/O控制器(EmcIO )、任务控制器(EmcTask )、图形用户界面(GUI)。
用户操作界面负责接收用户命令并反馈最新状态;
任务控制器是整个系统的决策层,主要负责对各种命令进行决策分类、解析发送给不同的模块;
运动控制器是实时刷新的,主要完成路径规划、插值运算等;
数字I/O控制器负责处理I/O信号,通过NML消息与运动控制器通信,因为不同设备I/O各不相同,这时需要硬件抽象层HAL文件建立软逻辑电路来控制实际I/O ;
HAL
HAL硬件抽象层是LinuxCNC系统的关键技术之一,通过引入HAL机制,为用户提供了统一的驱动开发接口,方便编写驱动,还能利用配置文件将相应的HAL模块连成一个复杂系统,方便数据传递。HAL模块结构图如图所示。
EtherCAT主站驱动与LinuxCNC之间采用HAL机制进行通信,硬件抽象层将各个底层的硬件驱动、实时算法抽象出来,构成一个组件,组件是由函数、参数、输入输出引脚所组成,输入信号包括来自LinuxCNC的控制信号、用户配置信息,输出信号包括提供给LinuxCNC的反馈量等。将编写好的HAL模块命令为ec.comp,编译生成ec.ko,利用insmod命令将其安装后就可以加载到线程中。
当HAL模块启动的时候,需要对变量进行初始化,但完成EtherCAT主站的初始化是更重要的,只有初始化了主站,设置好参数,建立起完整的通信网络,才能进行接下来的周期数据传输,其中PDO为进程数据对象、SDO为服务数据对象。如图为EtherCAT主站的初始化流程图。
主站初始化完成后,LinuxCNC开始正常运行。LinuxCNC在每个控制周期通过硬件抽象层下发控制命令,并获取从站设备反馈的信息。
HAL周期任务流程图如图所示。
对于采用位置控制的伺服单元,HAL模块每次都要计算出本控制周期的位移或目标点,然后通过EtherCAT总线发送到从站运动控制器;
然后从站运动控制器在每个控制周期上报编码器位置增量和I/O状态,HAL模块计算出轴的实际位置后发送给LinuxCNC。
UI界面
在Linux环境下开发用户界面的语言有Python, C++等,图形库有QT, GTK等。由于控制界面运行于用户态,实时性要求不高,同时兼顾开发难度和周期,本课题采用Python语言,结合PyQT图形库开发冲床控制界面。Python是一种面向对象的脚本语言,与其他语言相比,Python具有如下优点:面向对象、公开免费、跨平台可移植、功能强大、使用简单、模块丰富。QT是一个功能丰富广泛使用的GUI图形库,可用于Windows, Linux等平台,具有很好的可移植性。PyQt是Python语言与Qt图形库相结合的产物,从而可以通过Python来使用Qt图形库,具有模块丰富、跨平台和使用信号与槽机制的优点。数控界面调用LinuxCNC抽象出的Python接口与任务控制器通信,并监视LinuxCNC状态信息和错误信息。
本课题冲床数控系统设计加工状态、参数设置、警告与诊断和软件设置四个状态界面,四个状态界面下一共分设13个子界面,各个界面之间可以通过按钮进行切换,数控系统界面结构图如图所示。 系统的主界面由菜单栏、工作窗口、快捷工具栏和消息提示栏这四部分构成。菜单栏可以根据不同的操作需求切换不同的工作窗口,快捷工具栏是一些常用的快捷按钮,消息提示栏是提示快捷按钮内容和显示系统运行状况、错误信息汇报的区域,如图所示。 2.参数设置界面:参数设置界面用于设置控制系统及机械的参数,分设了系统参数设置、运动轴参数设置及模具库参数设置这3个子界面。下面主要讲解运动轴参数,运动轴参数设置界面如图所示。
3.警告与诊断界面:息记录界面这2个子界面。警告与诊断界面下设有警告信息诊断界面、历史警告信,如图所示。
4.软件设置界面:软件设置界面用于设置软件与外部设备的通讯参数和显示软件的版本等信息,设有软件信息、外部设备通讯设置及高级设置这3个子界面。下面讲解外部设备通讯设置界面,如图所示。
4.4 ET1200
EtherCAT从站控制器ESC(EtherCAT Slave Controller)是由德国BECKHOFF自动化有限公司提供的,包括ASIC芯片和IP-Core,实现EtherCAT数据链路层协议。目前ASIC从站控制专用芯片有ET1100和ET1200,也可以使用IP-Core将EtherCAT通信功能集成到设备控制FPGA当中,并根据需要配置功能和规模。图为ET1200从站控制器结构图: ET1200最多支持3个EtherCAT物理通信端口:
其中一个可以作为MII接口,用于与物理层PHY芯片交换数据。因为EtherCAT并不定义该接口的物理层,MII接口也是和传输介质无关接口,因此这种接口方式下的数据链路层与物理层彻底隔开,从而以太网能够选用任意的传输介质,包括无线电和光纤。ET1200其余两个接口均为EBUS接口,EBUS是德国倍福公司使用的LVDS(Low Voltage Differental Signaling)标准定义的数据传输标准,通信速率高达100Mbit/s,能与ESC芯片直接相连,减小PCB板体积和降低成本。EBUS的传输距离最大为10m。ET1200提供的物理设备接口有数字I/O和SPI两种,选用ARM作为从站微处理器是一般通过SPI接口访问ET1200。ET1200采用3.3 V供电,最大工作电流约为70mA,芯片发热量很小。
ET1200的主要技术指标:
ET1200从站控制器使用外部EEPROM来存储从站设备信息,下表是EEPROM存储数据分布示意图,其中0~63为基本信息,每次ESC启动时都会从EEPROM中读取其中的配置信息。
4.5 从站程序设计
运动控制器软件设计包括ARM主控制程序及外围电路驱动程序,外围驱动程序包括ET 1200驱动程序、AD采样芯片驱动程序、RS232驱动程序、SPI串行总线、FSMC并行总线驱动程序以及MCX314加减速控制程序设计等。运动控制器程序在STM32F427这款MCU上使用C语言开发,开发环境为Windows 7下的Keil uVision_5集成开发环境。
ARM主控制程序是运动控制器的核心,需要完成各个函数初始化、参数配置、数据处理、逻辑流程控制及控制算法运算等,图为支持查询模式(自由运行模式)的流程图。
ARM芯片在上电后不久进入main()函数,在main()函数中最先完成一系列系统正常运行相关函数的初始化,如延时初始化函数、LED初始化函数、串口初始化函数、中断向量表配置初始化函数,然后完成SPI初始化函数、定时器初始化函数、EtherCAT初始化函数以及FSMC总线初始化函数等。
接着完成通信初始化工作,查询主站的状态控制寄存器,读取事件请求寄存器0x220、相关配置寄存器,启动或关断相关通讯服务。
在完成以上工作后就进入主循环while(1),进行应用层任务处理和周期性数据处理,周期性数据处理和应用层任务处理有查询模式(自由运行模式)或同步模式(中断模式)这两种,本程序采用同步运行模式,所以在主循环中主要处理非周期性的任务。同步运行模式下周期性数据在中断服务程序中处理。
void main(void)
{
//--一执行一系列初始化函数--一
Delay_Init(168); //初始化延时函数
Led_Init(); //初始化LED端口
Uart_Init(9600); //初始化串口
AD7606_Init(); //初始化AD采样芯片
NVIC_Config(); //初始化STM32时钟及外设
SPI_Config(); //ET 1200用SPI总线初始化配置
Timer2_Init_ Config(); //Timer2初始化配置
ET 1200_GPIO_Config(); //ET 1200 GPIO初始化配置
ECAT_Init(); //初始化通信变量和ESC寄存器
FSMC_Init(); //FSMC并行总线初始化
//--一初始化完成,进入主循环--一
while(1)
{
ET1200_AlEvent=pEsc->AlEvent; //读应用层事件请求寄存器,
// ET1200_AlEvent为全局变量,在头文件中定义
if(!ET1200_IntEnabled) //处于自由运行模式(ET 1200_ IntEnabled -=0
//处于同步模式(ET1200 IntEnabled==1)
free_ run(); //处于自由运行模式时,进行周期性数据查询
el_event(); //应用层任务处理,包括状态机和非周期性数据等
}
}
从站设备可以运行于同步模式或自由运行模式,在自由运行模式中使用查询方式处理周期性过程数据,在同步模式使用中断服务程序处理性数据。
变量ET1200 IntEnabled来控制运行模式。ET1200 IntEnabled为1时,使用同步模式,ET1200 IntEnabled为0时,使用自由运行模式。
根据主站对SM的配置,在函数、参数初始化阶段来初始化变量ET1200_ IntEnabled,确定当前的运行模式。
本程序选择同步模式,以下将按照该模式讲解一个中断服务数据处理的工作流程,如图所示。
4.6 实验测试
实验测试平台由一台PC机、一套自主研发的冲床数控系统软件、一台自主研发的五轴高速运动控制器、一套单轴丝杠滑台、一套二维伺服平台、一套四轴同步测试架组成。
实验过程中需要注意,因为目前运动控制器专为数控冲床设计,仅保留1个M II接口连接主站,且设计最多连接轴数为五轴,故连接四轴同步测试架时不能接单轴丝杠滑台和二维伺服平台;测试过程中工业PC机和显示器使用笔记本代替。在平台上测试通过后将控制系统接入到LX230B型数控转塔冲床上进行测试和参数调试,最终成功开发出30T数控转塔冲床用高速运动控制系统。
基本通信功能测试
EtherCAT主从站基本通信功能测试时首先按图所示,使用网线将PC机与从站运动控制器连接起来后,在数控软件通信设置的外部设备通信设置中找到运动控制器连接状态,点击重新连接。使用Wireshark抓包工具抓取连接过程中主站广播的数据包,最终连接成功时运动控制器连接状态指示灯变为ON,从站状态变为操作状态(OP),从站状态机启动正常,如图所示。
由图可知该实验中EtherCAT报文的格式。报文总长度60个字节,前14个字节是以太网数据帧头,包括6字节的目的地址(ff:ff:ff:ff:ff:ff ) } 6字节的源地址(78:a5:04:c0:be:6f)} 2字节的帧类型(Ox88a4);接着是2字节的EtherCAT头,包括11位数据长度(Ox02a)}1位保留位(Ox0)}4位类型位(0x1);然后是EtherCAT数据,数据为2个子报文,每个子报文包含10字节子报文头,16字节数据,2字节WKC(工作计数器)。Wireshark抓取的报文与2.1节中的EtherCAT帧格式一 致,从而主从站之间实现了基本通信。
控制系统基本功能测试
控制系统基本功能测试是验证系统软硬件功能正常的重要实验,该项测试在单轴丝杠滑台完成,连接好PC机、运动控制器和单轴丝杠滑台,如图所示。在数控软件的手动加工中对输出I/O如伺服使能、紧急停止,回零点如X轴回零、Y轴回零,单轴位移控制如X+, X-, Y+, Y-进行测试,并观察滑台的运动情况和伺服驱动器面板显示来判断各项功能是否正常。经测试,软件上的相关按钮都工作正常,五个轴的接口、I/O接口工作正常,产生的脉冲精度误差为0。故数控系统软硬件基本功能测试通过。
G代码解释、圆弧插补测试
通过二维伺服运动平台圆弧插补实验测试运动控制系统G代码解释、圆弧插补等功能。该项测试主要在二维伺服平台上完成,连接PC机、运动控制器和二维伺服平台,如图所示,通过数控系统控制二维伺服运动平台的X轴和Y轴电机做圆弧插补,利用上方横梁固定的笔杆记录二维平台上白纸相对运动下的轨迹。二维平台中的两组伺服机丝杠的参数完全一致,丝杠螺距为20mm,设定伺服驱动器驱动电机旋转一圈为2000个脉冲,可知丝杠走1 mm需要100个脉冲,由此设置数控软件中的X, Y轴脉冲当量都为1000。
使用AutoCAD设计一个直径D为80mm的圆周,如图所示,绘制完成后保存为.dxf格式,然后使用一体化饭金CAD/CAM编程软件cncKad将.dxf格式的图纸转化为冲床数控软件所需的.PNC文件,即G代码。然后将G代码文件导入到数控软件中,预加工仿真运行无误后启动伺服,进行实际加工,最终得到实际绘制效果图如图_5 -6所示。绘制出的圆周尺寸精确,控制系统通过圆弧插补测试。
多轴运动的同步性能测试
多轴同步测试实验用来测试运动控制系统多轴运动的同步性能。该项测试主要利用四轴同步测试架完成,如图所示,测试架上固定安装有A, B, C, D共4组电机和驱动器。将电机驱动器与运动控制连接,控制器通过EtherCAT总线与PC机连接,打开数控软件,在加工状态中选择手动加工,控制伺服电机A, B,C, D同时做顺时针运动旋转,通过长时间运行测试观察轴上4个光盘指向分析电机运动的同步性。经过长时间测试观察后,电机按钮停止伺服轴转动,可以看到4个电机指向同一方向,驱动器面板显示脉冲数也一致。
实际产品应用
在上一节的一系列实验后,控制系统的各项功能都顺利通过测试,接下来把开发好的控制系统制作成便于使用的操作台和控制柜接入到LX230B型30T的数控转塔冲床上,取代原有的控制系统,操作台和控制柜如图所示。该冲床选用安川 -7系列AC伺服电机、 -V系列AC伺服驱动器。首先调试好伺服电机与伺服驱动器之间构成电流环、速度环的PID参数,让闭环的性能达到较好水平,再接入控制系统,其中编码器分频脉冲输出C相信号在轴回原点时使用。
为观测控制系统在数控转塔冲床上的应用效果,需要采用非接触测量仪测量板材运动过程中的振动曲线。根据实验室现有的条件,采用由日本Keyence公司生产的LK-G400型激光位移传感器和LK-GD_500型控制器作为非接触式测量工具。 LK-G400的主要技术参数为:使用距离为400mm,测量范围为士100mm,取样率20us,钡量精度为gum o LK-GD_500型控制器主要参数为:最小显示单位为O.Olum,显示周期10次/秒。
在冲床大板材(1200mm X 2_SOOmm)上选取测试点W点,如图所示。采用S型曲线加减速规划,加速度g为6,控制板材在X轴上高速移动lOmm,运动控制器输出的PULS(脉冲)信号局部波形如图所示。
使用软件LK-Navigator读取传感器测量的数据,如图所示。由图分析可知调节时间为130ms(按士0._5%误差带)、稳态误差士0.0_Smm,各项指标良好,达到工业应用要求。
5. 工具
5.1 TwinCAT
EtherCAT主站方案实现一般都采用倍福公司的TwinCAT, TwinCAT实现了强大的EtherCAT主站功能,从站XML表配置、EEPROM配置文件操作、扫描EtherCAT从站等,下图为使用TwinCAT开发冲床数控系统的过程。因为TwinCAT是基于Windows风格,拥有较好的人机交互界面,功能强大,非常适合上位机控制窗口的开发,但TwinCAT运行于Windows环境下,实时性很差,而且TwinCAT和Windows系统需要付费才能商业化应用,价格较高。
在学习EtherCAT的时候,TwinCAT是必须要学习的。TwinCAT软件其功能强大,可以写plc程序,可以写图形化界面,可以观察波形等等。初次学习时我就参考TwinCAT 3运动控制教程和TwinCAT NC PTP实用教程,把TwinCAT 3中界面的一些功能都试了一遍。另外用功能块学着写了凸轮、齿轮的程序,并用Visualization图形化界面来控制。(在学习TwinCAT时,要充分利用好帮助文档)。
因为我的任务是做一致性测试,所以关注点大部分放在了对协议的了解上,涉及到一致性测试的文档有ETF7000.2、ETG7010。具体可以去ETG官网上查找相关资料。做一致性测试时需要用到ET9400,这款软件不是免费的。目前还没开始测这部分。
对于带有EtherCAT伺服驱动器的性能的测试,用TwinCAT带着简单测过csp、csv、cst这三种模式。如果想要系统的测试驱动器所支持的操作模式,必须对驱动器的相关知识有一定的了解。另外就是对对象字典中对象充分了解。TwinCAT中的Process Data和CoE-Online界面是很重要的。这点我也没有完全掌握。没有以太网基础,对协议没有了解,直接接触EtherCAT这条学习之路感觉很艰难!
5.2 LinuxCNC
PC机部分软件以LinuxCNC为基础,往下LinuxCNC通过HAL(硬件抽象层)与EtherCAT主站驱动之间进行通信连接,然后EtherCAT主站通过以太网线给从站运动控制器发控制命令;往上利用LinuxCNC提供的Python调用接口和人机界面通信,数控系统人机界面采用PyQt开发;由于LinuxCNC需要运行实时任务,需要将普通操作系统进行改造。因此,目前的主要工作是对Linux系统进行实时性改造、安装EtherCAT主站、编写HAL模块、编写人机界面。
5.3 开源的EtherCAT Master
EtherCAT的主站开发是基于EtherCAT机器人控制系统的开发中非常重要的环节。目前常见开源的主站代码为的RT-LAB开发的SOEM (Simple OpenSource EtherCAT Master)和EtherLab的the IgH EtherCAT® Master。使用起来SOEM的简单一些,而the IgH EtherCAT® Master更复杂一些,但对EtherCAT的实现更为完整。
具体比较如下表:
参考资料
EtherCAT协议介绍.pdfEtherCAT Technology Group _ 技术概览记录STM32开发一个完整的EtherCAT的过程
优惠劵
pwl999
关注
关注
209
点赞
踩
1343
收藏
觉得还不错?
一键收藏
知道了
23
评论
EtherCAT (学习笔记)
文章目录1. 简介1.1 运动控制1.2 实时以太网1.3 EtherCAT2. EtherCAT原理介绍2.1 实时性2.2 端口管理2.3 EtherCAT网络拓扑2.4 EtherCAT网络协议栈2.5 EtherCAT数据帧格式2.6 EtherCAT设备寻址方式2.7 分布式时钟(Distribute Clock)2.8 应用层(Application Layer)2.9 设备配置(Device Profile)2.10 主站设计2.11 从站设计3. 应用层(Application Layer)
复制链接
扫一扫
专栏目录
ethercat总结
02-14
ethercat总结,主要是Ethercat基础介绍,运行原理与常用协议说明
EtherCAT中文介绍
10-22
实时以太网EtherCAT中文介绍资料,英文不好的可以参考一下。EtherCAT(以太网控制自动化技术)是一个开放架构,以以太网为基础的现场总线系统,其名称的CAT为控制自动化技术(Control Automation Technology)字首的缩写。EtherCAT是确定性的工业以太网,最早是由德国的Beckhoff公司研发。
23 条评论
您还未登录,请先
登录
后发表或查看评论
EtherCAT Slave Stack Code (SSC)
05-28
BECKHOFF(倍福)官方提供EtherCAT从站协议栈代码生成工具
版本:SSC V5.12(Tool 1.4.2)
EtherCAT EoE
最新发布
weilan0818的博客
01-16
453
EoE:将以太网帧插入到 EtherCAT 协议中。EtherCAT协议中的以太网帧通过非循环邮箱通信进行传输。
Ethercat概念学习
weixin_43914278的博客
04-10
1583
最近我们要基于Ethercat技术进行开发,首先需要了解其基本原理,github上看到了有相关实现,一起来看看吧。
EtherCAT.rar
08-12
搜集的EtherCAT官方相关资料,学习EtherCAT参考资料, 协议说明等等
ethercat学习笔记1
08-08
代码的笔记放到第二章。1.8 松下的从站 PDO映射。6040h控制字这个控制字是用来控制伺服电机上使能的。6041状态字这个状态字读取伺服电机的状态。控制模式
EtherCAT介绍
人人都懂物联网
03-11
1万+
EtherCAT(以太网控制自动化技术)是一个以以太网为基础的开放架构的现场总线系统,EtherCAT名称中的CAT为Control Automation Technology(控制自动化技术)首字母的缩写。最初由德国倍福自动化有限公司(Beckhoff Automation GmbH) 研发。EtherCAT为系统的实时性能和拓扑的灵活性树立了新的标准,同时,它还符合甚至降低了现场总线的使用成本。
EtherCAT简介
weixin_41883890的博客
06-30
2394
EtherCAT(用于控制自动化技术的以太网)是Beckhoff(倍福)在2003年开发的实时以太网网络。它基于CANOPEN协议和以太网,但是与Internet通信或网络通信不同之处在于,它专门针对工业自动化控制进行了优化。这些标准由EtherCAT技术小组(简称ETG)定义和维护。使用OSI网络模型,以太网和EtherCAT依赖于相同的物理和数据链路层。除此之外,由于针对不同任务进行了优化,因此这两个网络在设计上有所不同。例如,以太网被设计为通过许多不同的节点发送大量数据。它能够与数十亿个单独的地址之间
【EtherCAT】一、入门基础
06-09
5266
EtherCAT(Ethernet Control Automation Technology)是一种高性能实时以太网通信协议,用于在工业自动化领域中进行实时控制和通信。它是由德国Beckhoff自动化公司在2003年开发的,并被国际电工委员会(IEC)标准化为IEC 61158标准。EtherCAT的设计目标是实现极低的通信延迟和高带宽的数据传输,以满足高速控制和数据采集的需求。它通过一种特殊的主从架构实现,其中一个主站(Master)负责协调整个网络,而从站(Slave)则负责提供输入输出功能。
工控协议解读之EtherCAT协议硬核分析(转自知乎“智能制造之家“)
qq_43599327的博客
09-07
7036
EtherCAT协议
ethercat_slave_stack_code_tool_SSC_V5i12.rar
08-13
EtherCAT Slave Stack Code Tool 倍福官方从站开发工具5.12版本。
Ethercat xml规范
05-12
Ethercat xml规范
EtherCAT学习之路——概述
chenweizhen1991的博客
03-13
1万+
首发于知乎
最近在做基于EtherCAT的项目,看了一些网上的博客,感觉写的都比较松散。虽然,自己也是才开始学习,希望能把这段时间学到的东西总结一下。
1.EtherCAT简介
EtherCAT是由德国BECKHOFF自动化公司于2003年提出的实时工业以太网技术。它具有高速和高数据有效率的特点,支持多种设备连接拓扑结构。其从站节点使用专用的控制芯片,主站使用标准的以太网控制器。
Et...
[工业互联-9]:EtherCAT(以太网控制自动化技术)+TwinCAT 在生产自动化控制中的应用 、
文火冰糖(王文兵)的博客
06-09
4200
EtherCAT以太网控制自动化技术)是一个开放架构,以以太网为基础的现场总线系统,其名称的CAT为控制自动化技术ControlAutomationTechnology)字首的缩写。EtherCAT是确定性的工业以太网最早是由德国的Beckhoff公司研发。自动化对通讯一般会要求较短的信息更新时间(或称为周期时间)、信息同步时的通讯抖动量低,而且硬件的成本要低EtherCAT开发的目的就是让以太网可以运用在自动化应用中。
EtherCAT 应用层协议的部分理解(一)
热门推荐
王三三
06-22
2万+
不对EtherCAT进行介绍,只谈谈对EtherCAT应用层协议的简单理解1、COE (CANopen over EtherCAT) 一种基于且完全遵循CANopen协议的通信协议 用途:
1、用于驱动PDO对象,实现PDO对象间数据通信
2、用于驱动SDO对象,实现SDO对象间的数据传输 分类:
1、周期性过程数据通信 – 驱动PDO
[工业互联-23]:EtherCat从站 - EtherCAT协议栈与工作原理, 软硬件解决方案
文火冰糖(王文兵)的博客
07-10
2163
在EtherCAT(以太CAT)网络中,从站(Slave)是指通过EtherCAT总线连接到主站(Master)的外部设备或模块。从站通常是实时控制系统中的执行器(写)、传感器(读)、驱动器(写)等外部设备。从站在EtherCAT网络中起到了连接外部设备和主站之间的桥梁作用。它们接收主站发送的命令和控制信息,根据指令执行相应的操作,并将执行结果和实时数据通过EtherCAT总线返回给主站。每个从站在EtherCAT网络中都有一个唯一的站地址。
1.ethercat基本概念
weilan0818的博客
05-24
608
EtherCAT(以太网控制自动化技术)是一个开放框架,以以太网为基础的现场总线系统。是实时以太网的一种。实时以太网是常规以太网技术的延伸,以便满足工业控制领域的实时性数据通信要求。实时以太网有powerlink,profinet,sercosⅢ,ethercat等等。基于TCP/IP的实现:Modbus/TCP, Ethernet/IP基于以太网的实现:powerlink, profinet RT修改以太网的实现:EtherCAT, Sercos3, profinet IRT。
Ethercat学习资料
04-02
以下是关于EtherCAT学习资料的一些推荐:
1. EtherCAT官方网站:https://www.ethercat.org/
官方网站提供了EtherCAT协议的详细介绍、技术规范、应用案例等内容,是学习EtherCAT的重要参考资料。
2. EtherCAT技术手册
EtherCAT技术手册是一本详细介绍EtherCAT协议的书籍,包括EtherCAT协议的基本原理、应用案例、网络拓扑结构等内容,对于学习EtherCAT协议非常有帮助。
3. EtherCAT开发者论坛:https://forum.ethercat.org/
EtherCAT开发者论坛是一个交流和分享EtherCAT开发经验的平台,里面有很多有关EtherCAT协议的讨论和问题解答,对于学习和开发EtherCAT应用非常有帮助。
4. EtherCAT开发工具
EtherCAT开发工具包括EtherCAT协议分析器、EtherCAT节点开发工具等,可以帮助开发者更好地理解和开发EtherCAT应用。
5. EtherCAT培训课程
EtherCAT培训课程可以帮助初学者快速入门EtherCAT协议,掌握EtherCAT网络的设计和应用,提高开发效率。
总之,学习EtherCAT需要系统的学习和实践,建议初学者从官方网站入手,逐步深入学习,同时结合实际应用场景进行实践。
“相关推荐”对你有帮助么?
非常没帮助
没帮助
一般
有帮助
非常有帮助
提交
pwl999
CSDN认证博客专家
CSDN认证企业博客
码龄16年
暂无认证
142
原创
1万+
周排名
3万+
总排名
68万+
访问
等级
6905
积分
1510
粉丝
898
获赞
150
评论
4870
收藏
私信
关注
热门文章
EtherCAT (学习笔记)
67258
Xenomai (学习笔记)
21769
Device Tree 详解
19630
Unwind 栈回溯详解
18367
Linux bpf 1.1、BPF内核实现
18328
分类专栏
Linux Kernel解析
51篇
Riscv
2篇
Trace
29篇
Arm Linux
11篇
Android
1篇
Linux 驱动三板斧
21篇
Linux Monitor
9篇
Security
12篇
Misc
6篇
VxWorks
6篇
Stability
2篇
Performance
1篇
Power
Virtualization
2篇
RealTime OS
3篇
Motion Control
3篇
AI
最新评论
RISCV 入门 (学习笔记)
中南甘帅问贴贴:
开芯院和日报的网址都寄掉了,不看好riscv的未来
Linux usb 4. Device 详解
努力学习LINUX的嵌入式开发工程师:
我怎么没早点看到你
Linux usb 7. Linux 配置 ADBD
-Promise810:
其实不用执行命令 我记得/etc/ 目录下有个启动脚本专门 执行命令的 你可以看看那个脚本怎么写的
Linux usb 7. Linux 配置 ADBD
一名不会算法的在职算法工程师:
老兄,你还记得执行什么命令吗?
Linux usb 7. Linux 配置 ADBD
-Promise810:
检查一下设备树配置 对应的 usb 接口是否支持从机模式 支持的话 这个usb控制器就能出现
最新文章
Linux 驱动模块内存精简
Linux Phy 驱动解析
Linux mem 2.8 Kfence 详解
2023年1篇
2022年5篇
2021年29篇
2020年43篇
2018年26篇
2017年45篇
目录
目录
分类专栏
Linux Kernel解析
51篇
Riscv
2篇
Trace
29篇
Arm Linux
11篇
Android
1篇
Linux 驱动三板斧
21篇
Linux Monitor
9篇
Security
12篇
Misc
6篇
VxWorks
6篇
Stability
2篇
Performance
1篇
Power
Virtualization
2篇
RealTime OS
3篇
Motion Control
3篇
AI
目录
评论 23
被折叠的 条评论
为什么被折叠?
到【灌水乐园】发言
查看更多评论
添加红包
祝福语
请填写红包祝福语或标题
红包数量
个
红包个数最小为10个
红包总金额
元
红包金额最低5元
余额支付
当前余额3.43元
前往充值 >
需支付:10.00元
取消
确定
下一步
知道了
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝
规则
hope_wisdom 发出的红包
实付元
使用余额支付
点击重新获取
扫码支付
钱包余额
0
抵扣说明:
1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。 2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。
余额充值
EtherCAT (学习笔记)-CSDN博客
>EtherCAT (学习笔记)-CSDN博客
EtherCAT (学习笔记)
最新推荐文章于 2024-01-16 16:03:36 发布
pwl999
最新推荐文章于 2024-01-16 16:03:36 发布
阅读量6.7w
收藏
1.3k
点赞数
209
分类专栏:
Motion Control
文章标签:
ethercat
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/pwl999/article/details/109397700
版权
Motion Control
专栏收录该内容
3 篇文章
75 订阅
订阅专栏
文章目录
1. 简介1.1 运动控制1.2 实时以太网1.3 EtherCAT
2. EtherCAT原理介绍2.1 实时性2.2 端口管理2.3 EtherCAT网络拓扑2.4 EtherCAT网络协议栈2.5 EtherCAT数据帧格式2.6 EtherCAT设备寻址方式2.7 分布式时钟(Distribute Clock)2.8 应用层(Application Layer)2.9 设备配置(Device Profile)2.10 主站设计2.11 从站设计
3. 应用层(Application Layer)3.13.2 EtherCAT Slave Implementation (从站实现)
4. 应用实例4.1 主站操作系统(RTAI)4.2 主站EtherCAT程序(IGH)4.3 主站应用开发(LinuxCNC)4.4 ET12004.5 从站程序设计4.6 实验测试
5. 工具5.1 TwinCAT5.2 LinuxCNC5.3 开源的EtherCAT Master
参考资料
1. 简介
1.1 运动控制
运动控制系统处理机械系统中一个或多个坐标上的运动以及运动之间的协调,实现精确的位置控制、速度和加速度控制、转矩和力的控制等。
单轴的运动控制系统可分为开环、半闭环和闭环伺服系统。
多轴运动控制系统可以分成点位控制、连续轨迹控制和同步控制。
典型的运动控制系统,从结构上看,包括上位机控制窗口、运动控制器、驱动器、电机以及测量反馈系统等几个部分组成:
1.2 实时以太网
实时以太网(RTE, Real Time Ethernet)是常规以太网技术的延伸,以便满足工业控制领域的实时性数据通信要求。目前,国际上有多种实时工业以太网协议,根据不同的实时性和成本的要求使用不同的原理,大致可以分为以下三类:
(1)基于TCP/IP实现的工业以太网仍使用TCP/IP协议栈,通过上层合理的控制来解决通信过程中的不确定因素。这种方式具有较高的传输速率,适应于大量数据通信,更适合作为网关和交换设备的应用,不能实现很好的实时性。常用的通信控制方法有:合理调度,减少冲突的概率;定义帧数据的优先级,为实时数据分配最高优先级;使用交换式以太网等。使用这种方式的典型协议有Modbus/TCP和Ethernet/IP等。(2)基于以太网实现的工业以太网仍然使用标准的、未修改的以太网通信硬件,但是不适用TCP/IP来传输数据。它使用特定的报文进行传输。TCP/IP协议栈能使用时间控制层分发一定的时间片来利用网络资源。该类协议主要有Ethernet Powerlink, EPA C Ethernet for Plant Automation ), PROFINET IRT等。通过这种方式可以实现较好的实时性。(3)通过修改以太网协议实现的工业以太网,实现应答时间小于lms的硬实时,从站使用特定的硬件实现。由实时MAC控制实时通道内的通信,从根本上避免报文间的冲突。非实时数据依然能在通道中按原协议通信。典型协议有德国倍福的EtherCAT、西门子的PROFINET IRT等。
1.3 EtherCAT
德国BECKHOFF自动化公司于2003年开发出的EtherCAT实时以太网技术突破了其他以太网解决方案的系统限制:通过该项技术,无需接受以太网数据包,将之解码,然后再将过程数据复制到各个设备。
2. EtherCAT原理介绍
EtherCAT从站设备在报文经过其节点时读取相应的数据报文,同样输入数据也是在报文经过时插入到报文中。整个过程报文只有几纳秒的时间延迟,实时性获得极大提高
EtherCAT作为一种工业以太网总线,充分利用了以太网的全双工特性。使用主从通信模式,主站发送报文给从站,从站从中读取数据或将数据插入至从站。
主站可使用标准网卡实现,从站选用特定的EtherCAT从站控制器ESC(EtherCAT Slave Controller)或者FPGA实现,
主要完成通信和控制应用两部分功能,EtherCAT物理层选用标准以太网物理层器件。
从站能将收到的报文直接处理,并读取或插入有关的数据,再将报文发送给下一个EtherCAT从站。最末尾的EtherCAT从站返回处理完全的报文,然后由第一个从站发送给主站。整个通信过程充运行于全双工模式下,TX线发出的报文又通过RX线返回给主站:
2.1 实时性
数据包刷新时间的计算
数据包中所有从站的 Process Datarocess Datarocess Data rocess Data rocess Data rocess Datarocess Data数据 决定了数据包的长度。
一个Ethernet thernet数据包最小84 字节,不足 84 字节会补齐84 字节。由于EtherCAT Frame中有一些公共开销, 84 字节的数据包最多含18字节的过程数据。考虑到数据包必须经过每个从站两次才能回到主站,所数据包以固定的波特率100 Mbps在网络上传输两次的时间 这就是它的总线刷新时间 。
1.基于这个原则,以包含 1000路开关量信号的数据包为例,计算过程如下:
过程数据长度:1000/8=125Bytes
数据包长度:84-18+125=191Bytes=191*8 Bit= 1528 Bit
总线刷新时间:(1528Bit/100,000,000 Bps)*2=15.28us * 2 = 30.56us
注意,通常的数字量模块, 都是单纯的输出或者输入模块,而不是混合模块。所以 1000 个数字 量信号, Frame 中就会分配 125 字节。
2.再以包含100个EtherCAT伺服驱动器过程数据的EtherCAT数据包为例,假如每个伺服的过程数据只包括控制字(2字节)、状态字(2字节)、目标位置(4字节)、实际位置(4字节),其总线刷新时间的计算过程如下:
过程数据长度:100*(2+4)=600 Byte。
数据包长度:84-18+600=1266 Byte =671*8 Bit =5328 Bit
总线刷新时间:(5328 Bit/100,000,000 Bps) *2=100.656µs
注意,Frame中只为一个伺服分配了6个字节,这是因为根据Beckhoff公司的控制软件TwinCAT中关于EtherCAT的默认设置是从站的Input和Output使用同一数据段,所以数据包进入伺服驱动器时该数据段存放的是控制字和目标位置,而出来时则存放伺服的状态字和实际位置。
以上两个数据30.56µs和101.28 µs就是EtherCAT官方宣传资料中,刷新1000个数字量需要30µs,刷新100个伺服轴只需要100µs的数据由来。实际上,根据从站的类型、是否包含分布时钟、是否启用时钟同步、时钟同步的参数设置不同,在数据包中有可能还会增加8-12字节用于传输同步时钟值,以及相应的为每个从站增加一个Bit的标记等等,会增加几个微秒的刷新时间,暂且忽略不计。
以上计算只是数据包传输需要的理论时间,实际上,数据包经过每个从站会产生短暂的硬件延时。100M超五类网线接口的从站延时约1µs,而EBus的IO模块类从站延时约0.3µs,在毫秒级以下的控制任务中如果从站数量较多,这个时间也相当可观,计算刷新周期时应该考虑进去。
2.2 端口管理
一个从站控制器最多可以有4个端口,如果一个端口关闭了,控制器主动连接下一个端口。端口可以随着EtherCAT命令主动的打开或者关闭。逻辑端口设置决定了EtherCAT帧的处理和发送顺序。
2.3 EtherCAT网络拓扑
所有数据帧在网络中以一种“逻辑闭环”的方式传播,与网络的硬件拓朴无关,无论它是链式、菊花链、星形还是树形拓朴。
所有数据帧都由Master发出,以事前严格定义的顺序,依次经过网络上的所有从站,走过一个完整的闭环后回到Master 。 所有数据帧通过从站中的 EtherCAT Processing Unit (EtherCAT处理单元)只有 1 次。
线型拓扑:
任意数目的设备成线型连接 最多65535个设备
数据处理链型拓扑 带有分支线的数据处理链型拓扑 树型拓扑: 实时星型拓扑: 冗余线缆
选择冗余电缆可以满足快速增长的系统可靠性需求,以保证设备更换时不会导致网络瘫痪。您可以很经济地增加冗余特性,仅需在主站设备端增加使用一个标准的以太网端口(无需专用网卡或接口),并将单一的电缆从总线型拓扑结构转变为环型拓扑结构即可(见图7)。当设备或电缆发生故障时,也仅需一个周期即可完成切换。因此,即使是针对运动控制要求的应用,电缆出现故障时也不会有任何问题。
EtherCAT也支持热备份的主站冗余。由于在环路中断时EtherCAT从站控制器芯片将立刻自动返回数据帧,一个设备的失败不会导致整个网络的瘫痪。例如,拖链设备可以配置为分支拓扑以防线缆断开。
2.4 EtherCAT网络协议栈
CoE(Can over EtherCAT)
PDO(Process Data Object 过程数据对象)
SDO(Service Data Object 服务数据对象)
PDI(Process Data Interface 过程数据接口)(uC, SSI, I/O)
ESM(EtherCAT State Machine)
ESI(EtherCAT Slave Information) (XML device description)
ENI(EtherCAT Network Information)
CTT(Conformance Test Tool 一致性测试工具)
SM(SyncManagers 同步管理器)
MDP(modular device description 模块化设备描述 )
2.5 EtherCAT数据帧格式
EtherCAT数据直接嵌入在以太网数据帧中进行传输,只是采用了一种特殊的帧类型,该类型为Ox88A4, EtherCAT数据帧结构如图所示:
EtherCAT数据包由数据头和数据实体两部分组成,EtherCAT数据头包含2个字节,每个数据包里面可以只包含一个EtherCAT子报文,也可以包含多个子报文;一个EtherCAT子报文对应着一个从站,因此一个EtherCAT数据包可以操作 多个EtherCAT从站,相应的数据长度在44-1498字节之间,EtherCAT数据帧结构定义: 类型 字段:
EtherCAT子报文结构定义:
地址区 字段
EtherCAT 寻址:
EtherCAT 通信的实现是通过由主站发送至从站的 EtherCAT 数据帧来完成对从站设备内部存储区的读写操作, EtherCAT 报文对 ESC 内部存储区有多种寻址操作方式,从而可以实现多种通信服务。EtherCAT 段内寻址有设备寻址和逻辑寻址两种方式。
设备寻址是面对一个从站进行读写操作。
逻辑寻址是面向过程的数据操作, 实现同一报文读写多个从站设备的多播功能。
具备全部寻址方式的从站称为完整性从站,只具备部分寻址方式的从站则称为基本从站。
命令 字段
不同命令通过信息传输系统最优化对所有存取方法的读写
WKC 字段
Working Counter。如果成功寻址了EtherCAT设备,并且成功执行了读操作,写操作或读/写操作,则工作计数器将递增。 可以为每个数据报分配一个工作计数器值,该值是根据预期报文通过所有设备数来设置的。 通过将工作计数器的预期值与所有设备通过后的实际值进行比较,主站可以检查EtherCAT数据报是否已成功处理。
同步管理器
2.6 EtherCAT设备寻址方式
在EtherCAT的每个子报文中,有32位空间用于对EtherCAT设备进行寻址。寻址方式有四种,分别为:
位置寻址
位置寻址方式是根据从站的连接顺序,即物理位置实现的。在报文头的32bit地址中,前16bit的Position用于存放地址值,Offset用于存放ESC逻辑寄存器或者内存地址。报文每经过一个从站设备,其Position中的地址值加1。当一个从站接收到EtherCAT报文后,如果报文中的地址值为0,则该报文就是这个从站要要接收的报文。
在上图中,如果需要总线上第8个设备响应报文,则主站需要将报文的地址设为0xFFF9,当报文经过第1个从站时,地址为0xFFF9,不等于0,第1个从站不会响应报文,报文地址加1,变为0xFFFA。当报文经过第2个从站时,地址为0XFFFA,不等于0,第2个从站不会响应该报文,报文地址加1,变为0xFFFB。以此类推,当报文到达第8个从站时,此时地址值为0x0000,当前从站将接收报文。
位置寻址(Position Address / Auto Increment Address)只应在启动EtherCAT系统时用于扫描现场总线,以后只能偶尔使用以检测新连接的从站。 如果由热连接或链接问题导致循环暂时关闭,使用位置寻址可能会出现问题。 在这种情况下位置地址被移位,并且,如错误寄存器的值到设备的映射变得不可能,因此不能定位故障链路。
节点寻址
在启动阶段,主站通常采用位置寻址方式对总线上的从站进行寻址,之后采用节点寻址方式。
在报文中,报文头的32bit地址,前16bit的Address用于存放站点地址值,Offset用于存放ESC逻辑寄存器或者内存地址。
在每个从站中站点地址保存在寄存器(0x0010) 中。
顺序寻址时,主站可以对每个从站的站点地址进行设置,也可以直接读取每个从站的的站点地址。
节点寻址方式的优点是,每个从站的地址与其在总线中的位置无关。在添加/删除从站,甚至是改变总线拓扑结构的时候都能对从站进行正确的访问。
上图是节点寻址方式的示意图。8个从站的地址与其在总线中的位置并没有关系。出于直观的目的,4台伺服驱动器的地址被设置为连续的,4个I/O模块的地址被设置为连续的,在实际中并没有这样的要求。
EtherCAT从设备可以有两个配置的站点地址,一个由主站分配(Configured Station Address),另一个存储在SII EEPROM,并且可以由从站应用程序更改(Configured Station Alias address)。
配置站点地址由主站在启动期间分配,并且不能由EtherCAT从站更改。 配置站别名地址存储在SIIEEPROM中,可由EtherCAT从站更改。 配置的站别名必须由主站启用。 如果节点地址(NodeAddress)与配置的站地址或配置的站点别名匹配,将执行相应的命令操作。
逻辑寻址
EtherCAT的第三种寻址方式是逻辑寻址,首先需要了解的是FMMU。
FMMU(Fieldbus Memory Management Units)
FMMU称为总线内存管理单元,它存在与从站芯片ESC中,负责对从站物理地址与主站逻辑地址进行翻译并建立映射关系。主站在总线启动过程中对FMMU进行配置,内容包括:
• 逻辑地址的起始地址
• 数据长度(按跨字节数计算)
• 逻辑地址的起始位
• 逻辑地址的终止位
• 从站物理地址的起始地址
• 从站物理地址的起始位
• 操作类型(只读、只写、读写)
• 使能
在报文中,使用报文头的32bit地址的全部,用来表示大小为4GB的逻辑地址空间。 以上图为例,FMMU将逻辑地址中0x00012345第2位开始的,到0x00012346以第2位终止的区域,与从站物理地址中0x0010第0位开始的区域进行映射。
当从站收到来自主站的报文时,会检查报文中的地址是否与FMMU中的地址相符,如果有,将根据操作类型进行读写操作。
这种寻址方式的优点是,在主站想对每个从站进行访问的时候,只需要对逻辑空间中的地址进行操作,而无须关心该地址对应的从站物理地址,减轻了主站的负担。
所有器件读取和写入相同的逻辑4 GB地址空间(EtherCAT数据报中的32位地址字段)。 从器件使用映射单元(FMMU,现场总线存储器管理单元)将数据从逻辑过程数据映像映射到其本地地址空间。 在启动期间,主器件配置每个从器件的FMMU。 从站使用FMMU的配置信息知道逻辑过程数据映像的哪些部分必须映射到哪个本地地址空间。
逻辑寻址支持逐位映射。 逻辑寻址是一种强大的机制,可以减少过程数据通信的开销,因此通常用于访问过程数据。
当从站设备收到的EtherCAT报文带有逻辑寻址标志位时,从站设备将检查自身是否有相应的FMMU单位地址与之匹配。
总结:EtherCAT使用三种方式对设备进行寻址,在启动过程中,使用顺序寻址方式为从站分配节点地址,然后通过节点寻址方式配置从站寄存器,将逻辑地址与从站物理地址进行映射,之后就可以使用逻辑寻址方式进行过程数据交换了。
Broadcast寻址
每个EtherCAT从站都被寻址。
使用广播寻址。 如果从站的预期是相同的,用于所有从站的初始化和检查所有从站的状态。每个从器件具有一个16位Local地址空间:
地址范围0x0000:0x0FFF专用于EtherCAT寄存器,
地址范围0x1000:0xFFFF用作过程数据RAM
通过EtherCAT数据报的偏移字段寻址,过程数据。
2.7 分布式时钟(Distribute Clock)
通过分布式时钟精确的调整,系统可达到精确的同步。
外部时钟同步IEEE1588 EtherCAT设备同步 定义系统时间
定义一个参考时钟:
一个EtherCAT从站被当做参考时钟使用
参考时钟循环的发布它的时钟
参考时钟根据一个全局参考时钟 IEEE1588
2.8 应用层(Application Layer)
应用层AL(Application Layer) 为用户与网络之间提供接口,应用层在EtherCAT 通信协议层次结构中是与用户联系最紧密最直接的一层,它可以直接与用户进行交互,实现面对具体的应用程序和控制任务等功能, EtherCAT 应用层为各种服务协议与应用程序之间定义了接口, 使其能够满足应用层所要求的各种协议共同工作的需求。
EtherCAT 作为网络通信技术,支持CAN open 协议中的CiA402,以及 SERCOS 协议的应用层( 即 CoE 和SoE)等多种符合行规的设备和协议。
EtherCAT状态机 设备和网络的启动
邮箱接口和协议 设备的存取变量 异步传输
协议:
EOE: Ethernet over EtherCAT
COE: CANopen over EtherCAT
FOE: Filetransfer over EtherCAT
SOE: Servo Drive over EtherCAT
从站信息接口 设备特征和配置信息
EtherCAT状态机
状态机构建于数据链路层 定义EtherCAT从站设备一般信息状态 指定对EtherCAT从站设备启用网络时初始化和错误处理 状态和主从站之间通信关系相一致 从站设备的请求状态和当前状态反应于应用层和应用层注册中
定义了五种状态:
Init // 应用层没有数据交互,主站对数据传输信息注册有同路
Pre-Operational // 应用层上的邮箱通信。没有过程数据交互
Safe-Operational // 应用层上的邮箱通信。过程数据通信,但是仅仅是输入被评估,输出置于Safe状态
Operational // 输入和输出都是有效的
Bootstrap // 定义了固件更新。是可选的,但是在固件必须要更新时推荐选择
// 只能和init进行状态间转换,没有过程数据通信,通过应用层的邮箱进行通信,根据需要的情况对邮箱进行配置,只能使用FoE协议。
从站设备的请求状态和当前状态反应于应用层控制和应用层注册中:
应用层控制(0x0120) 初始化设备状态机的状态转换
应用层状态(0x0130) 设备状态机的实际状态
应用层状态代码(0x0134) 错误原因或者其他状态代码
邮箱传输
交换变量数据的标准方式 邮箱接口是可选择的,但是推荐使用 如果过程数据是可设置的,或者有其他的非周期性服务,必须邮箱通信 全双工能力 从站可以发起一个数据交互 预留两个同步管理器通道: Sync Manager 0(主站到从站),Sync Manager 1(从站到主站) 数据交互的早期阶段,邮箱方式是可利用的(State Pre-Operational) 支持多种协议的能力
邮箱通信协议的类型:
EOE: Ethernet over EtherCAT // 通过EtherCAT传输的标准以太网帧
COE: CANopen over EtherCAT // 访问CANopen对象字典和它的对象,CANopen紧急事件和事件驱动的PDO消息
FOE: Filetransfer over EtherCAT // 下载上传固件和其他的一些文件
SOE: Servo Drive over EtherCAT // 存取伺服轮廓检验(IDN)
从站信息接口
强制从站信息接口SII(Slave Information Interface)由所有能被持久保持的对象组成 信息被存储于一个EEPROM,EtherCAT从站控制器和EEPROM之间有一个SPI接口。
SII包括:
boot设置数据
设备一致性
vender id,产品序列号,修正号,serial no
和CoE对象0x1018里,相同的信息
应用程序信息数据
额外的一些数据
AL Status Code(Application Layer Status Code)
Application Layer: Describes the highest layer of the EtherCAT slave stack which includes the EtherCAT State Machine, error handling, Mailbox protocol handling, slave application.
此可选属性由应用程序控制,并报告由AL的状态控制事例检测到的最后错误或ID值。AL(应用层)状态代码给出从机进入错误状态的原因。 如果错误标志(寄存器0x0130:04)为TRUE,则应提供AL状态代码.
2.9 设备配置(Device Profile)
设备行规描述了设备的应用参数和功能特性,如设备类别相关的机器状态等。现场总线技术已经为I/O设备、驱动、阀等许多设备类别提供了可利用的设备行规。用户非常熟悉这些行规以及相关的参数和工具,因此,EtherCAT无需为这些设备类别重新开发设备行规,而是为现有的设备行规提供了简单的接口。该特性使得用户和设备制造商可以轻松完成从现有的现场总线到EtherCAT技术的转换过程。
EtherCAT实现CANopen (CoE)
CANopen©设备和应用行规广泛用于多种设备类别和应用,如I/O组件、驱动、编码器、比例阀、液压控制器,以及用于塑料或纺织行业的应用行规等。
EtherCAT可以提供与CANopen机制[7]相同的通讯机制,包括对象字典、PDO(过程数据对象)、SDO(服务数据对象),甚至于网络管理。
因此,在已经安装了CANopen的设备中,仅需稍加变动即可轻松实现EtherCAT,绝大部分的CANopen©固件都得以重复利用。并且,可以选择性地扩展对象,以便利用EtherCAT所提供的巨大带宽。
EtherCAT实施伺服驱动 设备行规IEC 61491 (SoE)
SERCOS interface™ 是全球公认的、用于高性能实时运行系统的通讯接口,尤其适用于运动控制的应用场合。
用于伺服驱动和通讯技术的SERCOS™框架属于IEC 61491标准[8] 的范畴。该伺服驱动框架可以轻松地映射到EtherCAT中,嵌入于驱动中的服务通道、全部参数存取以及功能都基于EtherCAT邮箱(参见图12)。在此,关注焦点还是EtherCAT与现有协议的兼容性(IDN的存取值、属性、名称、单位等),以及与数据长度限制相关的扩展性。过程数据,即形式为AT和MDT的SERCOS™数据,都使用EtherCAT从站控制器机制进行传送,其映射与SERCOS映射相似。并且,EtherCAT从站的设备状态也可以非常容易地映射为SERCOS™协议状态。EtherCAT从站状态机可以很容易地映射到SERCOS™协议的通信阶段。
EtherCAT为这种在CNC行业中广泛使用的设备行规提供了先进的实时以太网技术。这种设备行规的优点与EtherCAT分布时钟提供的优点相结合,保证了网络范围内精确时钟同步。可以任意传输位置命令,速度命令或扭矩命令。取决于实现方式,甚至可能继续使用相同的设备配置工具。
EtherCAT实现以太网(EoE)
EtherCAT技术不仅完全兼容以太网,而且在“设计”之初就具备良好的开放性特征——该协议可以在相同的物理层网络中包容其它基于以太网的服务和协议,通常可将其性能损失降到最小。对以太网的设备类型没有限制,设备可通过交换机端口在EtherCAT段内进行连接。以太网帧通过EtherCAT协议开通隧道,这也正是VPN、 PPPoE (DSL) 等因特网应用所普遍采取的方法。EtherCAT网络对以太网设备而言是完全透明的,其实时特性也不会发生畸变(参见图13)。 EtherCAT设备可以包容其它的以太网协议,因此具备标准以太网设备的一切特性。主站的作用与第2层交换机所起的作用一样,可按照编址信息将以太网帧重新定向到相应的设备。因此,集成万维网服务器、电子邮件和FTP 传送等所有的因特网技术都可以在EtherCAT的环境中得以应用。
EtherCAT实现文件读取(FoE)
这种简单的协议与TFTP类似,允许存取设备中的任何数据结构。因此,无论设备是否支持TCP/IP,都有可能将标准化固件上载到设备上。
ADS over EtherCAT (AoE)
ADS over EtherCAT (AoE)是由EtherCAT规范定义的客户端-服务器邮箱协议。尽管CoE协议提供了详尽的描述,但AoE则更适合路由与并行服务的应用:通过网关设备访问子网络,如EtherCAT至CANopen® 或EtherCAT至IO-Link™ 网关设备。AoE使EtherCAT主站应用(如PLC程序)可以访问所属CANopen® 或 IOLink™从站的各个参数。AoE路由机制开销远低于因特网协议(IP)所定义的开销,并且发送方和接收方寻址参数始终包含在AoE报文中。因此,EtherCAT主站和从站端的实施更为精简。AoE也通过EtherCAT自动化协议(EAP)进行非周期通信的标准化,从而为上位机MES系统或主计算机、EtherCAT主站及其从属的现有设备之间提供无缝通信。同时,AoE也提供了从远程诊断工具获取EtherCAT网络诊断信息的标准化方法。
2.10 主站设计
EtherCAT可以在单个以太网帧中最多实现1486字节的分布式过程数据通讯。其它解决方案一般是,主站设备需要在每个网络周期中为各个节点处理、发送和接收帧。
而EtherCAT系统与此不同之处在于,在通常情况下,每周期仅需要一个或两个帧即可完成所有节点的全部通讯,因此,EtherCAT主站不需要专用的通讯处理器。主站功能几乎不会给主机CPU带来任何负担,轻松处理这些任务的同时,还可以处理应用程序,因此EtherCAT无需使用昂贵的专用有源插接卡,只需使用无源的NIC卡或主板集成的以太网MAC设备即可。EtherCAT主站很容易实现,尤其适用于中小规模的控制系统和有明确规定的应用场合。
例如,如果某个单个过程映像的PLC没有超过1486 字节,那么在其周期时间内循环发送这个以太网帧就足够了。因为报文头运行时不会发生变化,所以只需将常数报文头插入到过程映像中,并将结果传送到以太网控制器即可。
EtherCAT映射不是在主站产生,而是在从站产生(外围设备将数据插入所经以太网帧的相应位置),因此,此时过程映像已经完成排序。该特性进一步减轻了主机CPU的负担。可以看到,EtherCAT主站完全在主机CPU中采用软件方式实现,相比之下,传统的慢速现场总线系统通过有源插接卡方可实现主站的方式则要占用更多的资源,甚至服务于DPRAM的有源卡本身也将占用可观的主机资源。
系统配置工具(通过生产商获取)可提供包括相应的标准 XML 格式启动顺序在内的网络和设备参数。
已经在各种实时操作系统上实现了EtherCAT主站,包括但并不限于:eCos, INtime, MICROWARE OS-9,MQX, On Time RTOS-32, Proconos OS, Real-Time Java, RT Kernel, RT-Linux, RTX, RTXC, RTAI Linux,PikeOS, Linux with RT-Preempt, QNX, VxWin + CeWin, VxWorks, Windows CE, Windows XP/XPE with CoDeSys SP RTE, Windows NT/NTE/2000/XP/XPE/Vista with TwinCAT RTE, Windows 7 and XENOMAI Linux. 可以获得开源主站协议栈,作为示例代码或商业软件。也有各种公司提供各种硬件平台上的实施服务。可以在EtherCAT网站上的产品区找到快速增长的供应商信息[1]。
另一种EtherCAT主站的实现方式是使用样本代码,花费不高。软件以源代码形式提供,包括所有的EtherCAT主站功能,甚至还包括EoE(EtherCAT实现以太网)功能(见图15)。开发人员只要把这些应用于Windows环境的代码与目标硬件及所使用的RTOS加以匹配就可以了。该软件代码已经成功应用于多个系统。
2.11 从站设计
从站EtherCAT Processing Unit 总是位于 Port 0 之后其它端口之前,并在数据帧传输的过程中提取和插入数据:
DPRAM: 双端口存储器 Dual-Ported RAM,可以分别从主站及本地微处理器uC访问。访问 ESC 的 Dual-Ported RAM 读出 并/或 写入数据。
从器件具有一个16位Local地址空间:
地址范围0x0000:0x0FFF专用于EtherCAT寄存器,
地址范围0x1000:0xFFFF用作过程数据RAM
SyncManagers 阻止主站和从站微处理器(uC)同时访问 ESC存储区,确保数据的一致性
→ 含周期性数据 (Process Data) 和非周期性数据 (Mailbox)
FMMUs 为Lxx数据报文完成逻辑地址到物理地址的转换
→ 仅对于周期性数据 (Process Data)
从站的SyncManagers 和 FMMU 是由主站在初始化阶段自动配置的,该配置基于每个从站的XML文件和整个网络的设置。
EtherCAT从站设备使用一个价格低廉的从站控制器芯片ESC。从站不需要微处理器就可以实现EtherCAT通信。可以通过I/O接口实现的简单设备可以只由ESC和其下的PHY,变压器和RJ45接头。给从站的过程数据接口是32位的I/O接口。这种从站没有可配置的参数,所以不需要软件或邮箱协议。EtherCAT状态机由ESC处理。ESC的启动信息从EEPROM中读取,它也支持从站的身份识别。
更复杂的可配置从站有使用一个CPU。这个CPU和ESC之间使用8位或16位并行接口或串行SPI接口。要求的CPU性能取决于从站的应用,EtherCAT协议软件在其上运行。EtherCAT协议栈管理EtherCAT状态机和应用层协议,可以实现CoE协议和支持固件下载的FoE协议。EoE协议也可以实施。
从站控制器通常都有一个内部的DPRAM(DUAL PORT RAM),并提供存取这些应用内存的接口范围:
串行SPI(串行外围接口)主要用于数量较小的过程数据设备,如模拟量I/O模块、传感器、编码器和简单驱动等。该接口通常使用8位微控制器,如微型芯片PIC、DSP、Intel 80C51等(见图16)。
8/16位微控制器并行接口与带有DPRAM接口的传统现场总线控制器接口相对应,尤其适用于数据量较大的复杂设备。通常情况下,微控制器使用的接口包括Infineon 80C16x、Intel 80x86、Hitachi SH1、ST10、ARM和TI TMS320等系列(见图16)。
32位并行I/O接口不仅可以连接多达32位数字输入/输出,而且也适用于简单的传感器或执行器的32位数据操作。这类设备无需主机CPU(见图17)。
PDO(过程数据对象)、SDO(服务数据对象)
报文通过从站控制器时,从站读取出相关命令并进行对应处理,数据处理通过硬件完成,延间约为100-_500ns,通信性能独立于MCU的响应时间。每个ESC最大有容量为64KB的可用的内存编址,能进行连续或同步的读写。多个EtherCAT命令数据可以被嵌入到一个以太网报文中,每个数据对应独立的设备或内存区。
EtherCAT极大提高了以太网的性能,比如操作1000个I/O信号的时间约为30微秒。单个报文至多容纳1486字节的过程数据,和12000位I/O信号相当,更新所需时间约为300微秒。控制100个伺服单元的时间约为100微秒。
在基于PC的主站中,一般使用网络接口卡NIC(Network Interface Card)其中的网卡芯片集成了以太网通信控制器和物理层数据收发器。但是在嵌入式主站中,通信控制器通常集成在微处理器中。
EtherCAT从站设备同时实现应用控制和数据通信两部分功能,其组成如图所示,由四部分组成:从站控制微处理器、EtherCAT从站控制器ESC芯片、物理层器件和其他应用层器件。
EtherCAT报文由从站控制器来处理,使用双端口存储区完成主从站间的数据交换。每个从站ESC在环路上按各自的顺序移位读写数据。当数据帧经过从站时,ESC从中读取发送给自己的命令数据并放到内部存储区,插入的数据又被从内部 存储区写到子报文中。
从站控制微处理器主要负责处理EtherCAT通信和完成控制任务。微处理器从ESC获取控制数据实现设备控制功能,并采样设备的反馈数据写入ESC。从站控制微处理器的选型根据设备控制任务,可以使用ARM或DSP; 8位、16位或32位的处理器。EtherCAT从站采用MII接口模式时,需要使用标准以太网物理层器件:物理层芯片PHY,隔离变压器等。采用EBUS接口时不需要任何其他芯片。
3. 应用层(Application Layer)
3.1
3.2 EtherCAT Slave Implementation (从站实现)
DPRAM (双端口存储器)size and number of SyncManagers(同步管理 )
The DPRAM is used for exchange of cyclic and acyclic data(循环和非循环的数据交换) via the EtherCAT network. SyncManagers ensure data consistency(保证数据的一致性) within the DPRAM.
Each ESC has 4kByte of registers (addresses 0x0000 to 0x0FFF) which are reserved for (EtherCAT and PDI communication) configuration settings(配置设置 ).
Mailbox(邮箱) and process data is exchanged via additional DPRAM (also called user memory用户存储器 ). EtherCAT allows addressing(编址) of user memory of up to 60kBytes. ASICs provide between 1kByte and 8kByte of DPRAM, IP Cores can be configured to provide the full 60kByte of user memory.
Application Note: The standard SyncManager configuration is(标准的同步管理配置)
- 1 SyncManager per acyclic data output (mailbox out, master to slave)
- 1 SM for acyclic data input (mailbox in, slave to master)
- 1 SM for cyclic data output (process data out, master to slave)
- 1 SM for cyclic data input (process data in, slave to master)
For process data, SM running in 3-buffer-mode(3缓存模式) need three times the length (3倍长度) of actual process data for physical memory(物理内存) . The following table shows a schema(体系结构,模式) of how to allocate(分配) the length for the 4 SM.
Table 5: DPRAM Size Calculation Example( DPRAM大小计算示例)
SyncManagerBuffer CountLength [Byte]Total length [Byte]SM0Output Mailbox1L_MbxOut1*L_MbxOutSM1Input Mailbox1L_MbxIn+ 1*L_MbxInSM2Outputs3L_Out (TxPDO)+ 3*L_OutSM3Inputs3L_In (RxPDO)+3*L_In----∑ DPRAM size
SyncManagers are enabled(开启) by the following settings of the master during network initialization(网络初始化) .
-Physical address of ESC(ESC物理地址)
-Data length (数据长度)
-SyncManager control input(同步管理控制输入) :
i. Operation mode【操作模式】 (mailbox-mode/3-buffer-mode)
ii. Access direction【访问方向:读或者写】 (Read direction/Write direction)
iii. Interrupt settings 【中断设置】 (Valid/Invalid 有效/无效 )
iv. SyncManager watchdog setting【同步管理看门狗定时器设置】 (Valid/Invalid)
v. SyncManager setting (Valid/Invalid)
The default values are set in the ESI (chapter 2.4.1); the master initializes the SyncManager using the values from the ESI.(默认值在 ESI中设置,主站初始化时调用 ESI中的值)
Syncmanagers(同步管理器)
同步管理器简称SM用来协调应用程序和主机的数据交互,同步管理器同步的是数据而非时间,同步管理器确保了应用程序和主机能够正确的写入或读取数据。同时同步管理器可以以中断的形式通知主机和应用程序发生的数据更新事件。
从站的ESC中包含多个同步管理器,每一个同步管理器都可以单独的配置:
同步管理器的配置中包括告知同步管理器其需要管理的内存地址的范围,管理内存的属性(属于读或写,属于邮箱数据或过程数据)。
所以每一种数据交互方式都会有一个同步管理器来管理,应用程序进行数据交互时,只需要更具不同的同步管理器就可以方便的区分数据的类型(PDO 或SDO、读或写)。从站在初始化时会读取SM管理器中的配置来确定数据的存放地址。
数据的交互主要有缓冲模式和邮箱模式。缓冲模式主要应用于周期性过程数据的传送。
Number of Fieldbus Memory Management Units (FMMUs)(现场总线储存管理单元)
In an EtherCAT network, the memory of all slaves can be compiled in the master(所有从站的储存都可以在主站中编辑) to a logical memory(逻辑内存) . This logical memory is managed by FMMUs to map(映射) logical addresses to physical addresses in the slavesFMMUs(逻辑内存通过 的管理和从站中的物理内存相对应) .
For the FMMU configuration in a device, each consistent output and each consistent input block needs one FMMU and an additional FMMU for mailbox status response is necessary. // 对于设备中的FMMU配置,每个一致的输出和每个一致的输入块都需要一个FMMU,并且还需要一个用于邮箱状态响应的附加FMMU。
Application Note: The standard configuration is one FMMU per each, cyclic output and cyclic input data block , optionally an additional one for mapping the mailbox response availability flag into process data (thus, no polling of mailboxes is necessary). If the outputs and inputs are groupede.g. like in Table 5, 3 FMMUs are configured, see Table 6. // 应用说明:标准配置是每个循环输出和循环输入数据块一个FMMU,还可以选择另外一个用于将邮箱响应可用性标志映射到过程数据中(因此,不需要轮询邮箱)。 如果输出和输入被分组,例如 如表5所示,配置了3个FMMU,请参阅表6。
Table 6: FMMU Configuration
FMMUAssigned SyncManagerNameLength [Byte]1SM2OutputsL_Out (TxPDO)2SM3InputsL_In (RxPDO)3SM0 & SM1Mbx-SM Status FlagsMbx In/Out Length
Distributed Clocks (DCs(同步) with other slave devices,分布式时钟 ) for synchronization
Evaluate if the device should support high precise(支持高精度) synchronization with other slave devices. If so, DCs should be supported by the selected ESC. Distributed Clocks refer to the DC function for EtherCAT slaves (chapter 1.3.5). The times held by slaves are adjusted with this mechanism(途径) and thus enable precise synchronization of the nodes(节点) in the EtherCAT network. // 评估设备是否应支持与其他从设备的高精度同步。 如果是这样,所选的ESC应该支持DC。 分布式时钟指的是EtherCAT从站的DC功能(第1.3.5章)。 通过这种机制可以调整从站保持的时间,从而实现EtherCAT网络中节点的精确同步。
EEPROM(电可擦只读存储器)
The EEPROM is mounted(安装) outside the ESC and connected via I2C with point-to-point link(点对点连接) . According to the size of the EEPROM the EEPROM_SIZE signal should be set. For more details, refer to the Knowledge Base, chapter 11.3 d electrical Interface EEPROM an(I 2C)". For EEPROM (SII) Enhanced Link Detection setting (加强连接检测设置) , refer to documentation of the ESC vendor. // EEPROM安装在ESC外部,并通过I2C与点对点链接连接。 根据EEPROM的大小,应设置EEPROM_SIZE信号。 有关更多详细信息,请参见知识库第11.3章“电气接口EEPROM和(I 2C)”。有关EEPROM(SII)增强链接检测设置,请参阅ESC供应商的文档。
Application Controller【应用控制】 (Host Controller, μ C)
If a local software application provides the device functionality, any 8 or 16 bit synchronous or asynchronous microcontroller(任何一个 8位或者 16位同步或者异步微控制器) can be connected to the ESC. The application controller communicates with the ESC via the Process Data Interfaces (PDI).
To adapt the application software on the host(为了和主站的应用程序相适应 ) controller to the ESC, sample software stacks(样本软件栈) are available for communication implementation(通讯的实现), e.g. the Slave Sample Code(从站样本代码) (SCC). If the device is a 32 bit digital I/O interface, no application controller or additional communication software is necessary. // 为了使主机控制器上的应用软件适应ESC,可以使用示例软件堆栈进行通信实现,例如从机样本代码(SCC)。 如果设备是32位数字I/O接口,则无需应用程序控制器或其他通讯软件。
In most cases, manufacturers(制造商) can use a familiar microcontroller type as application controller in the EtherCAT device(使用相似型号的微控制器作为应用控制使用在 EtherCAT设备中) . If application software already exists, e.g. for a different fieldbus, it can be used for the EtherCAT device as well. // 在大多数情况下,制造商可以在EtherCAT设备中使用熟悉的微控制器类型作为应用程序控制器。 如果应用软件已经存在,例如 对于不同的现场总线,它也可以用于EtherCAT设备。
The source code(源代码) for communications software on the host controller allocates(分配) about 70kByte. The following features are a typical configuration (referring to the Slave Sample Code):
EtherCAT State Machine (ESM), including error handling(错误处理)
Device diagnosis(设备诊断)
Master-Slave data synchronization (主从站之间的数据同步) with SyncManager event (no DCs)
Mailbox CoE
Object Dictionary (对象字典) (20 objects) for process data objects (过程数据对象)
CoE services, including CoE Info services(信息服务) , no segmented transfer (无分割转换)
A list of other available sample stacks can be obtained on the product section of the ETG website.
Application Layer Communication Protocols (应用层通讯协议)
In EtherCAT, several protocols are available (see chapter 1.3.6) for the application layer to implement (实施) the required specification of the product development(产品开发时所需的规格) . When to apply them is described here.
CAN application protocol (总线应用协议 )over EtherCAT(CoE) To provide acyclic data exchange as well as mechanisms to configure PDOs for cyclic data exchange in a structured way, CoE (with SDO-Info support) should be implemented.
Servo drive profile(伺服驱动配置文件) over EtherCAT(SoE) SoE is an alternative drive profile to the CiA402 drive profile. It is often used by drive manufacturers which are familiar with the SERCOS interface.
Ethernet(以太网) over EtherCAT(EoE) EoE is usually used to provide webserver interfaces(网络接口) via EtherCAT. It is also used for devices providing decentral standard Ethernet ports(分散生产方式的标准以太网端口) . ? File Access(文件存取组件) over EtherCAT(FoE) If the device should support firmware(固件)download via EtherCAT, FoE should be supported. FoE is based on TFTP. It provides fast file transfer and small protocol implementation.
ADS over EtherCAT(AoE)小协议实施 When planning to control the device via a .Net interface, AoE is an option to apply.
Application Note:An exemplary(典范) CoE implementation is shown below.
The user application runs the device specific software(设备专用软件) on the μ C to implement device features(实现设备功能特性 ). Sample source code(protocol stacks) offered by EtherCAT stack vendors can be used to develop this application or to adapt existing software to EtherCAT.
Application Note:EtherCAT Slave Stack Code (SSC,从站堆栈代码 ).
The SSC is a free sample codefrom Beckhoff(德国倍福自动化有限公司)(免费样本代码) which provides an interface to the ESC. For hardware independent software development(独立于硬件的软件开发) , the SSC runs on several evaluation kits(评估板) and can be customized(自定义) for implementation in accordance with the product specification. Figure 14 shows the SSC structure with the interfaces to the user specific device application(用户特定的设备应用) and the ESC.
Application Note:EtherCAT Slave Protocol Stack.(从站协议栈)
Hilscher(德国赫优讯公司) offers a Slave Control Stack based on its netX hardware withDual Port Memoryinterface (DPM,双端口记忆器 ) and it is available for the user application with an API. Figure 15 shows the protocol stack architecture(协议栈构架) with interfaces to the ESC and the user application.
Device Profiles(设备配置文件)
During network initialization(网络初始化期间) , parameter setup(参数设定) is necessary, where data does not need to be transmitted cyclically(周期性传输) but only during network initialization. Acyclic data exchange is done via mailbox protocols(非循环的数据传输通过邮箱协议) , usually via theCoEprotocol (see chapter 2.3.5). For devices with variable process data structure, the definition of a modular device description(MDP,模块化设备描述 ) is available. The MDP is described in the ETG.5001 Modular Device Profile Specification(说明书) . // 在网络初始化期间,必须进行参数设置,这些数据不需要循环传输,而仅在网络初始化期间需要传输。 非循环数据交换是通过邮箱协议(通常通过CoE协议)完成的(请参阅第2.3.5章)。 对于具有可变过程数据结构的设备,可以使用模块化设备描述(MDP)的定义。 EDP.5001模块化设备配置文件规范中描述了MDP。
The MDP is based on the object dictionary defined byCoE(CAN application protocol over EtherCAT). The object dictionary can be described as a two dimensional list(二维表) . Each list entry (每个表的入口) is identified(识别) by an index(指针,索引) (0x0000–0xFFFF) which represents an object. Each object can contain up to 255 subindices(分目录) , also called object entries. The object list is structured in different areas, see Table 7. // MDP基于CoE(基于EtherCAT的CAN应用协议)定义的对象字典。 对象字典可以描述为二维列表。 每个列表条目均由代表对象的索引(0x0000-0xFFFF)标识。 每个对象最多可以包含255个子索引,也称为对象条目。 对象列表的结构在不同区域中,请参见表7。
The idea of the MDP is to provide a basic structure for masters(为主站提供一个基本构架) and configuration tools(配置工具) to handle(处理) slaves with complex (modular) structure easily. The user has the advantage, that if the slave variables’(变量)s are sorted in an MDP style, he can find the different data types by identical patterns(相同的模式) . // MDP的思想是为主机和配置工具提供基本结构,以轻松处理具有复杂(模块化)结构的从机。 用户的优势在于,如果以MDP样式对从属变量进行排序,则他可以通过相同的模式找到不同的数据类型。
The MDP can be applied to various types of devices. It is applicable to multiple axis(多轴) servo drive system(伺服驱动系统) of various functionality groups(各种功能组) , such as positioning(位置控制) , torque(扭矩控制) and velocity control(转速控制) . It is further applicable to gateway(网关) between different fieldbuses, i.e., Profibus, DeviceNet. Modular devices are driven by two aspects: // MDP可以应用于各种类型的设备。 适用于各种功能组的多轴伺服驱动系统,例如定位,转矩和速度控制。 它进一步适用于不同现场总线之间的网关,即Profibus,DeviceNet。 模块化设备由两个方面驱动:
Comprise(包含) physically connectable modules and plurality of functionalities(多数功能) .
//包括物理上可连接的模块和多种功能。
Comprise plurality of channels(多数通道) directly being connected to the EtherCAT network.
//包括多个直接连接到EtherCAT网络的通道。
The MDP imagines slaves which consist of one or several modules. A module can be hardware which is connected/disconnected to a slave. Examples are gateways between EtherCAT and e.g. CANopen or a bus coupler(总线耦合器) between EtherCAT and a proprietary backbone bus(专用主干总线) . // MDP设想从站由一个或几个模块组成。模块可以是已连接/断开连接到从站的硬件。示例是EtherCAT与例如CANopen或EtherCAT与专有骨干总线之间的总线耦合器。
A module can also be a logical module which describes data sets, e.g. a drive which supports a velocity controlled mode and a position controlled mode –the MDP would describe the data as two modules, one for each mode.(把数据描述成 2种模式,每个对应相应的模式) // 模块也可以是描述数据集的逻辑模块,例如。一个支持速度控制模式和位置控制模式的驱动器-MDP将数据描述为两个模块,每个模式一个。
No matter what kind of module is described it needs more or less the same information categories(需要相对应的信息分类) , which are organized in the profile specific index range (Table 7). // 无论描述哪种模块,它都或多或少需要相同的信息类别,这些信息类别在配置文件特定的索引范围内进行组织(表7)。
Application Note:Modular Device Profile Structure(模块化设备配置文件结构) . // 应用说明:模块化设备配置文件结构。
Consider an MDP for a line of slave device modules which are connected together on a backbone layer(主干网层面) via LVDS and via a coupler(耦合器) with MII. Figure 16 shows a schema how to define device profiles(如何定义设备配置文件) such that a modular profile dictionary is set up for the slave device line. // 考虑一排从设备模块的MDP,这些设备通过LVDS和带有MII的耦合器在主干层上连接在一起。图16显示了一种模式,该模式如何定义设备配置文件,以便为从属设备线设置模块化配置文件字典。
For implementation of the profile (CiA402 Drive Profile) for servo drive, build the program with reference to the corresponding specifications(技术规格,说明书) . In this example, this would be the
ETG.6010 Implementation Directive(指令) for the CiA402 Drive Profile, and
IEC 61800-7 Drive Profiles and Mapping to EtherCAT.
4. 应用实例
由于EtherCAT实时工业以太网技术具有适用范围广、拓扑结构灵活、数据通信效率高、实时性强和同步性能好等多种优点,所以特别适用于实时性要求高、通信数据量大的运动控制系统。
控制系统设计采用“PC+运动控制器”的方案,构建多轴运动控制系统,采用PC机为主站、ARM+MCX314为从站处理器的架构。其核心插补与控制算法都放在工业PC中完成,运动控制器要求大为降低,其主要完成数字给定量到实际脉冲信号的转变。该控制系统方案的优势在于简化硬件设计工作,主要以标准化的硬件为主:上位机可以采用工业PC机、下位机使用开发的通用运动控制器,方便日后升级维护。工业PC机与运动控制器直接采用EtherCAT实时工业以太网进行通信连接。
4.1 主站操作系统(RTAI)
PC机部分软件以LinuxCNC为基础,往下LinuxCNC通过HAL(硬件抽象层)与EtherCAT主站驱动之间进行通信连接,然后EtherCAT主站通过以太网线给从站运动控制器发控制命令;往上利用LinuxCNC提供的Python调用接口和人机界面通信,数控系统人机界面采用PyQt开发;由于LinuxCNC需要运行实时任务,需要将普通操作系统进行改造。因此,目前的主要工作是对Linux系统进行实时性改造、安装EtherCAT主站、编写HAL模块、编写人机界面。
虽然EtherCAT主站程序能够安装在非实时操作系统上,但一般情况下会对主站进行实时性改造,而且LinuxCNC中有运行实时任务的需要,所以对Linux系统进行实时性改造迫在眉睫。众所周知,Linux系统本质上是一个分时操作系统,不是一个实时操作系统。Linux系统实时性不强使其在嵌入式应用中有一定的局限性,受内核可抢占性、进程调度方式、中断处理机制、时钟粒度、虚拟内存管理等几个方面的制约。
根据实时性系统要求以及Linux的特点和性能分析,对标准Linux实时性的改造存在多种方法,较为合理的两大类方法为:直接修改Linux内核源代码和双内核法。
1.直接修改Linux内核源代码:对Linux内核代码进行细微修改并不对内核作大规模的变动,在遵循GPL协议的情况下,直接修改内核源代码将Linux改造成一个完全可抢占的实时系统。核心修改面向局部,不会从根本上改变Linux内核,并且一些改动还可以通过Linux的模块加载来完成,即系统需要处理实时任务时加载该功能模块,不需要时动态卸载该模块。这种方法存在的问题是:很难百分之百保证,在任何情况下,GPOS(通用操作系统)程序代码绝不会阻碍RTOS的实时行为。也就是说,通过修改Linux内核,难以保证实时进程的执行不会遭到非实时进程所进行的不可预测活动的干扰。2.双内核法:双内核法是在同一硬件平台上采用两个相互配合,共同工作的系统核心,通过在Linux系统的最底层增加一层实时核心来实现。其中的一个核心提供精确的实时多任务处理,另一个核心提供复杂的非实时通用功能。其优点是可以做到硬实时,并且能很方便地实现一种新的调度策略。目前采用这种方案的主要有RTAT,RT-Linux和Xenomai。本课题采用RTAI实时包的方式完成对Linux系统的实时性改造,如图所示。
RTAI(实时应用接口)是Linux内核的一个实时扩展,RTAI是基于ADEOSC Adaptive Domain Environment for Operating System)实现,ADEOS位于Linux系统和硬件之间管理硬件中断,并控制实时内核和Linux内核的优先级,其中实时内核优先级高于Linux内核优先级。
RTAI安装:
1.下载RTAI压缩包并解压到urs/src目录下,输入命令:
cd /usr/src
sudo tar -bzip2 -xvf rtai一3.8.tar.bz2
2.下载Linux内核压缩包并解压到urs/src目录下,输入命令:
sudo cp suoxd/linux-2.6.37.1.tar.bz2 /usr/src
sudo tar -bzip2 -xvf linux一2.6.32.2.tar.bz2
3.利用RTAI源码中的文件给内核打补丁,未安装p atch需安装patch后,输入命令:
sudo patch -pl
4.配置内核,Linux2.6.32引入新的方式用于简化kernel的配置,使用命令拷贝当前配置,省去很多繁琐的内核配置选项。
5.安装内核模块,输入命令:
sudo make clean
sudo make
sudo make modules
sudo make modules install
sudo make install
6.配置RTAI,下载安装MESA库文件和EFLTK包,然后进入RTAI文件夹,执行配置,输入命令:
cd /usr/src/rtai
sudo make config
7.编译并安装RTAI,命令行窗口的RTAI安装结果如图4-2所示,输入命令:
sudo make
sudo make install
8.RTAI内核延时测试,利用RTAI源码包中的测试案例进行测试,测试结果如下:
cd /usr/realtime/testsuite/user/latency
sudo ./run
9.RTAI内核抢占实现测试,测试结果如图4-4所示,输入命令行:
cd /usr/realtime/testsuite/user/preempt
sudo ./run
4.2 主站EtherCAT程序(IGH)
本控制系统EtherCAT主站以实时Linux操作系统为基础,在Linux环境下开发主站有两方面优势,一方面Linux为开源系统,方便对底层进行修改;另一方面便于进行嵌入式移植。Linux下的EtherCAT主站架构如图所示:
Linux操作系统可分为内核态和用户态。内核态是操作系统的核心,负责进程管理、内存管理、进程间通信和设备管理和驱动等,实时性要求高。用户态主要运行人机交互、数据监控等实时性要求不高的程序。
EtherCAT主站模块运行在内核态,可支持一个或多个EtherCAT主站,且同时提供应用接口和设备接口。用户通过应用接口访问主站,通过设备接口连接设备到指定主站。EtherCAT的以太网设备驱动模块通过主站设备接口与主站连接,EtherCAT设备协议可直接由以太网帧传送,因而主站能同时并行处理EtherCAT数据帧和通用以太网通信。
在Linux上安装EtherCAT主站程序,这里选择EtherLab开发的IgH EtherCAT Master,首先下载主站安装文件gHEtherLab.tar.bz2,下载文件后解压缩进入含有Makefile文件的目录安装主站,输入命令:
make ethercatMaster
make ethercatMasterinstall
sudo /etc/init.d/ethercat start
ethercat master
若最后两条指令运行正常则说明主站安装成功。
4.3 主站应用开发(LinuxCNC)
LinuxCNC是一款运行在Linux平台下的实时开源数控软件。起源于美国国家标准与技术研究院的增强型运动控制器EMC (Enhanced Machine Controller)研究项目,用于机床的数控系统。经过十几年的发展,LinuxCNC系统广泛用于冲床、车床、3D打印机、激光切割机、等离子切割机、机器人手臂等领域。其主要优点有:提供多个标准化的用户界面、用户也可以采用自主开发的GUI、自带G代码解析器、支持伺服电机控制步进电机开环控制、运动控制器功能强大、支持非笛卡尔坐标运动系统、采用2.4或2.6的Linux内核支持RT-Linux或RTAI实时补丁。LinuxCNC源代码可以免费下载,安装在Linux系统上。LinuxCNC软件架构如图所示。
LinuxCNC是一个模块化设计的软件,大致可以分为以下四个主要模块:运动控制器(EmcMot)、数字I/O控制器(EmcIO )、任务控制器(EmcTask )、图形用户界面(GUI)。
用户操作界面负责接收用户命令并反馈最新状态;
任务控制器是整个系统的决策层,主要负责对各种命令进行决策分类、解析发送给不同的模块;
运动控制器是实时刷新的,主要完成路径规划、插值运算等;
数字I/O控制器负责处理I/O信号,通过NML消息与运动控制器通信,因为不同设备I/O各不相同,这时需要硬件抽象层HAL文件建立软逻辑电路来控制实际I/O ;
HAL
HAL硬件抽象层是LinuxCNC系统的关键技术之一,通过引入HAL机制,为用户提供了统一的驱动开发接口,方便编写驱动,还能利用配置文件将相应的HAL模块连成一个复杂系统,方便数据传递。HAL模块结构图如图所示。
EtherCAT主站驱动与LinuxCNC之间采用HAL机制进行通信,硬件抽象层将各个底层的硬件驱动、实时算法抽象出来,构成一个组件,组件是由函数、参数、输入输出引脚所组成,输入信号包括来自LinuxCNC的控制信号、用户配置信息,输出信号包括提供给LinuxCNC的反馈量等。将编写好的HAL模块命令为ec.comp,编译生成ec.ko,利用insmod命令将其安装后就可以加载到线程中。
当HAL模块启动的时候,需要对变量进行初始化,但完成EtherCAT主站的初始化是更重要的,只有初始化了主站,设置好参数,建立起完整的通信网络,才能进行接下来的周期数据传输,其中PDO为进程数据对象、SDO为服务数据对象。如图为EtherCAT主站的初始化流程图。
主站初始化完成后,LinuxCNC开始正常运行。LinuxCNC在每个控制周期通过硬件抽象层下发控制命令,并获取从站设备反馈的信息。
HAL周期任务流程图如图所示。
对于采用位置控制的伺服单元,HAL模块每次都要计算出本控制周期的位移或目标点,然后通过EtherCAT总线发送到从站运动控制器;
然后从站运动控制器在每个控制周期上报编码器位置增量和I/O状态,HAL模块计算出轴的实际位置后发送给LinuxCNC。
UI界面
在Linux环境下开发用户界面的语言有Python, C++等,图形库有QT, GTK等。由于控制界面运行于用户态,实时性要求不高,同时兼顾开发难度和周期,本课题采用Python语言,结合PyQT图形库开发冲床控制界面。Python是一种面向对象的脚本语言,与其他语言相比,Python具有如下优点:面向对象、公开免费、跨平台可移植、功能强大、使用简单、模块丰富。QT是一个功能丰富广泛使用的GUI图形库,可用于Windows, Linux等平台,具有很好的可移植性。PyQt是Python语言与Qt图形库相结合的产物,从而可以通过Python来使用Qt图形库,具有模块丰富、跨平台和使用信号与槽机制的优点。数控界面调用LinuxCNC抽象出的Python接口与任务控制器通信,并监视LinuxCNC状态信息和错误信息。
本课题冲床数控系统设计加工状态、参数设置、警告与诊断和软件设置四个状态界面,四个状态界面下一共分设13个子界面,各个界面之间可以通过按钮进行切换,数控系统界面结构图如图所示。 系统的主界面由菜单栏、工作窗口、快捷工具栏和消息提示栏这四部分构成。菜单栏可以根据不同的操作需求切换不同的工作窗口,快捷工具栏是一些常用的快捷按钮,消息提示栏是提示快捷按钮内容和显示系统运行状况、错误信息汇报的区域,如图所示。 2.参数设置界面:参数设置界面用于设置控制系统及机械的参数,分设了系统参数设置、运动轴参数设置及模具库参数设置这3个子界面。下面主要讲解运动轴参数,运动轴参数设置界面如图所示。
3.警告与诊断界面:息记录界面这2个子界面。警告与诊断界面下设有警告信息诊断界面、历史警告信,如图所示。
4.软件设置界面:软件设置界面用于设置软件与外部设备的通讯参数和显示软件的版本等信息,设有软件信息、外部设备通讯设置及高级设置这3个子界面。下面讲解外部设备通讯设置界面,如图所示。
4.4 ET1200
EtherCAT从站控制器ESC(EtherCAT Slave Controller)是由德国BECKHOFF自动化有限公司提供的,包括ASIC芯片和IP-Core,实现EtherCAT数据链路层协议。目前ASIC从站控制专用芯片有ET1100和ET1200,也可以使用IP-Core将EtherCAT通信功能集成到设备控制FPGA当中,并根据需要配置功能和规模。图为ET1200从站控制器结构图: ET1200最多支持3个EtherCAT物理通信端口:
其中一个可以作为MII接口,用于与物理层PHY芯片交换数据。因为EtherCAT并不定义该接口的物理层,MII接口也是和传输介质无关接口,因此这种接口方式下的数据链路层与物理层彻底隔开,从而以太网能够选用任意的传输介质,包括无线电和光纤。ET1200其余两个接口均为EBUS接口,EBUS是德国倍福公司使用的LVDS(Low Voltage Differental Signaling)标准定义的数据传输标准,通信速率高达100Mbit/s,能与ESC芯片直接相连,减小PCB板体积和降低成本。EBUS的传输距离最大为10m。ET1200提供的物理设备接口有数字I/O和SPI两种,选用ARM作为从站微处理器是一般通过SPI接口访问ET1200。ET1200采用3.3 V供电,最大工作电流约为70mA,芯片发热量很小。
ET1200的主要技术指标:
ET1200从站控制器使用外部EEPROM来存储从站设备信息,下表是EEPROM存储数据分布示意图,其中0~63为基本信息,每次ESC启动时都会从EEPROM中读取其中的配置信息。
4.5 从站程序设计
运动控制器软件设计包括ARM主控制程序及外围电路驱动程序,外围驱动程序包括ET 1200驱动程序、AD采样芯片驱动程序、RS232驱动程序、SPI串行总线、FSMC并行总线驱动程序以及MCX314加减速控制程序设计等。运动控制器程序在STM32F427这款MCU上使用C语言开发,开发环境为Windows 7下的Keil uVision_5集成开发环境。
ARM主控制程序是运动控制器的核心,需要完成各个函数初始化、参数配置、数据处理、逻辑流程控制及控制算法运算等,图为支持查询模式(自由运行模式)的流程图。
ARM芯片在上电后不久进入main()函数,在main()函数中最先完成一系列系统正常运行相关函数的初始化,如延时初始化函数、LED初始化函数、串口初始化函数、中断向量表配置初始化函数,然后完成SPI初始化函数、定时器初始化函数、EtherCAT初始化函数以及FSMC总线初始化函数等。
接着完成通信初始化工作,查询主站的状态控制寄存器,读取事件请求寄存器0x220、相关配置寄存器,启动或关断相关通讯服务。
在完成以上工作后就进入主循环while(1),进行应用层任务处理和周期性数据处理,周期性数据处理和应用层任务处理有查询模式(自由运行模式)或同步模式(中断模式)这两种,本程序采用同步运行模式,所以在主循环中主要处理非周期性的任务。同步运行模式下周期性数据在中断服务程序中处理。
void main(void)
{
//--一执行一系列初始化函数--一
Delay_Init(168); //初始化延时函数
Led_Init(); //初始化LED端口
Uart_Init(9600); //初始化串口
AD7606_Init(); //初始化AD采样芯片
NVIC_Config(); //初始化STM32时钟及外设
SPI_Config(); //ET 1200用SPI总线初始化配置
Timer2_Init_ Config(); //Timer2初始化配置
ET 1200_GPIO_Config(); //ET 1200 GPIO初始化配置
ECAT_Init(); //初始化通信变量和ESC寄存器
FSMC_Init(); //FSMC并行总线初始化
//--一初始化完成,进入主循环--一
while(1)
{
ET1200_AlEvent=pEsc->AlEvent; //读应用层事件请求寄存器,
// ET1200_AlEvent为全局变量,在头文件中定义
if(!ET1200_IntEnabled) //处于自由运行模式(ET 1200_ IntEnabled -=0
//处于同步模式(ET1200 IntEnabled==1)
free_ run(); //处于自由运行模式时,进行周期性数据查询
el_event(); //应用层任务处理,包括状态机和非周期性数据等
}
}
从站设备可以运行于同步模式或自由运行模式,在自由运行模式中使用查询方式处理周期性过程数据,在同步模式使用中断服务程序处理性数据。
变量ET1200 IntEnabled来控制运行模式。ET1200 IntEnabled为1时,使用同步模式,ET1200 IntEnabled为0时,使用自由运行模式。
根据主站对SM的配置,在函数、参数初始化阶段来初始化变量ET1200_ IntEnabled,确定当前的运行模式。
本程序选择同步模式,以下将按照该模式讲解一个中断服务数据处理的工作流程,如图所示。
4.6 实验测试
实验测试平台由一台PC机、一套自主研发的冲床数控系统软件、一台自主研发的五轴高速运动控制器、一套单轴丝杠滑台、一套二维伺服平台、一套四轴同步测试架组成。
实验过程中需要注意,因为目前运动控制器专为数控冲床设计,仅保留1个M II接口连接主站,且设计最多连接轴数为五轴,故连接四轴同步测试架时不能接单轴丝杠滑台和二维伺服平台;测试过程中工业PC机和显示器使用笔记本代替。在平台上测试通过后将控制系统接入到LX230B型数控转塔冲床上进行测试和参数调试,最终成功开发出30T数控转塔冲床用高速运动控制系统。
基本通信功能测试
EtherCAT主从站基本通信功能测试时首先按图所示,使用网线将PC机与从站运动控制器连接起来后,在数控软件通信设置的外部设备通信设置中找到运动控制器连接状态,点击重新连接。使用Wireshark抓包工具抓取连接过程中主站广播的数据包,最终连接成功时运动控制器连接状态指示灯变为ON,从站状态变为操作状态(OP),从站状态机启动正常,如图所示。
由图可知该实验中EtherCAT报文的格式。报文总长度60个字节,前14个字节是以太网数据帧头,包括6字节的目的地址(ff:ff:ff:ff:ff:ff ) } 6字节的源地址(78:a5:04:c0:be:6f)} 2字节的帧类型(Ox88a4);接着是2字节的EtherCAT头,包括11位数据长度(Ox02a)}1位保留位(Ox0)}4位类型位(0x1);然后是EtherCAT数据,数据为2个子报文,每个子报文包含10字节子报文头,16字节数据,2字节WKC(工作计数器)。Wireshark抓取的报文与2.1节中的EtherCAT帧格式一 致,从而主从站之间实现了基本通信。
控制系统基本功能测试
控制系统基本功能测试是验证系统软硬件功能正常的重要实验,该项测试在单轴丝杠滑台完成,连接好PC机、运动控制器和单轴丝杠滑台,如图所示。在数控软件的手动加工中对输出I/O如伺服使能、紧急停止,回零点如X轴回零、Y轴回零,单轴位移控制如X+, X-, Y+, Y-进行测试,并观察滑台的运动情况和伺服驱动器面板显示来判断各项功能是否正常。经测试,软件上的相关按钮都工作正常,五个轴的接口、I/O接口工作正常,产生的脉冲精度误差为0。故数控系统软硬件基本功能测试通过。
G代码解释、圆弧插补测试
通过二维伺服运动平台圆弧插补实验测试运动控制系统G代码解释、圆弧插补等功能。该项测试主要在二维伺服平台上完成,连接PC机、运动控制器和二维伺服平台,如图所示,通过数控系统控制二维伺服运动平台的X轴和Y轴电机做圆弧插补,利用上方横梁固定的笔杆记录二维平台上白纸相对运动下的轨迹。二维平台中的两组伺服机丝杠的参数完全一致,丝杠螺距为20mm,设定伺服驱动器驱动电机旋转一圈为2000个脉冲,可知丝杠走1 mm需要100个脉冲,由此设置数控软件中的X, Y轴脉冲当量都为1000。
使用AutoCAD设计一个直径D为80mm的圆周,如图所示,绘制完成后保存为.dxf格式,然后使用一体化饭金CAD/CAM编程软件cncKad将.dxf格式的图纸转化为冲床数控软件所需的.PNC文件,即G代码。然后将G代码文件导入到数控软件中,预加工仿真运行无误后启动伺服,进行实际加工,最终得到实际绘制效果图如图_5 -6所示。绘制出的圆周尺寸精确,控制系统通过圆弧插补测试。
多轴运动的同步性能测试
多轴同步测试实验用来测试运动控制系统多轴运动的同步性能。该项测试主要利用四轴同步测试架完成,如图所示,测试架上固定安装有A, B, C, D共4组电机和驱动器。将电机驱动器与运动控制连接,控制器通过EtherCAT总线与PC机连接,打开数控软件,在加工状态中选择手动加工,控制伺服电机A, B,C, D同时做顺时针运动旋转,通过长时间运行测试观察轴上4个光盘指向分析电机运动的同步性。经过长时间测试观察后,电机按钮停止伺服轴转动,可以看到4个电机指向同一方向,驱动器面板显示脉冲数也一致。
实际产品应用
在上一节的一系列实验后,控制系统的各项功能都顺利通过测试,接下来把开发好的控制系统制作成便于使用的操作台和控制柜接入到LX230B型30T的数控转塔冲床上,取代原有的控制系统,操作台和控制柜如图所示。该冲床选用安川 -7系列AC伺服电机、 -V系列AC伺服驱动器。首先调试好伺服电机与伺服驱动器之间构成电流环、速度环的PID参数,让闭环的性能达到较好水平,再接入控制系统,其中编码器分频脉冲输出C相信号在轴回原点时使用。
为观测控制系统在数控转塔冲床上的应用效果,需要采用非接触测量仪测量板材运动过程中的振动曲线。根据实验室现有的条件,采用由日本Keyence公司生产的LK-G400型激光位移传感器和LK-GD_500型控制器作为非接触式测量工具。 LK-G400的主要技术参数为:使用距离为400mm,测量范围为士100mm,取样率20us,钡量精度为gum o LK-GD_500型控制器主要参数为:最小显示单位为O.Olum,显示周期10次/秒。
在冲床大板材(1200mm X 2_SOOmm)上选取测试点W点,如图所示。采用S型曲线加减速规划,加速度g为6,控制板材在X轴上高速移动lOmm,运动控制器输出的PULS(脉冲)信号局部波形如图所示。
使用软件LK-Navigator读取传感器测量的数据,如图所示。由图分析可知调节时间为130ms(按士0._5%误差带)、稳态误差士0.0_Smm,各项指标良好,达到工业应用要求。
5. 工具
5.1 TwinCAT
EtherCAT主站方案实现一般都采用倍福公司的TwinCAT, TwinCAT实现了强大的EtherCAT主站功能,从站XML表配置、EEPROM配置文件操作、扫描EtherCAT从站等,下图为使用TwinCAT开发冲床数控系统的过程。因为TwinCAT是基于Windows风格,拥有较好的人机交互界面,功能强大,非常适合上位机控制窗口的开发,但TwinCAT运行于Windows环境下,实时性很差,而且TwinCAT和Windows系统需要付费才能商业化应用,价格较高。
在学习EtherCAT的时候,TwinCAT是必须要学习的。TwinCAT软件其功能强大,可以写plc程序,可以写图形化界面,可以观察波形等等。初次学习时我就参考TwinCAT 3运动控制教程和TwinCAT NC PTP实用教程,把TwinCAT 3中界面的一些功能都试了一遍。另外用功能块学着写了凸轮、齿轮的程序,并用Visualization图形化界面来控制。(在学习TwinCAT时,要充分利用好帮助文档)。
因为我的任务是做一致性测试,所以关注点大部分放在了对协议的了解上,涉及到一致性测试的文档有ETF7000.2、ETG7010。具体可以去ETG官网上查找相关资料。做一致性测试时需要用到ET9400,这款软件不是免费的。目前还没开始测这部分。
对于带有EtherCAT伺服驱动器的性能的测试,用TwinCAT带着简单测过csp、csv、cst这三种模式。如果想要系统的测试驱动器所支持的操作模式,必须对驱动器的相关知识有一定的了解。另外就是对对象字典中对象充分了解。TwinCAT中的Process Data和CoE-Online界面是很重要的。这点我也没有完全掌握。没有以太网基础,对协议没有了解,直接接触EtherCAT这条学习之路感觉很艰难!
5.2 LinuxCNC
PC机部分软件以LinuxCNC为基础,往下LinuxCNC通过HAL(硬件抽象层)与EtherCAT主站驱动之间进行通信连接,然后EtherCAT主站通过以太网线给从站运动控制器发控制命令;往上利用LinuxCNC提供的Python调用接口和人机界面通信,数控系统人机界面采用PyQt开发;由于LinuxCNC需要运行实时任务,需要将普通操作系统进行改造。因此,目前的主要工作是对Linux系统进行实时性改造、安装EtherCAT主站、编写HAL模块、编写人机界面。
5.3 开源的EtherCAT Master
EtherCAT的主站开发是基于EtherCAT机器人控制系统的开发中非常重要的环节。目前常见开源的主站代码为的RT-LAB开发的SOEM (Simple OpenSource EtherCAT Master)和EtherLab的the IgH EtherCAT® Master。使用起来SOEM的简单一些,而the IgH EtherCAT® Master更复杂一些,但对EtherCAT的实现更为完整。
具体比较如下表:
参考资料
EtherCAT协议介绍.pdfEtherCAT Technology Group _ 技术概览记录STM32开发一个完整的EtherCAT的过程
优惠劵
pwl999
关注
关注
209
点赞
踩
1343
收藏
觉得还不错?
一键收藏
知道了
23
评论
EtherCAT (学习笔记)
文章目录1. 简介1.1 运动控制1.2 实时以太网1.3 EtherCAT2. EtherCAT原理介绍2.1 实时性2.2 端口管理2.3 EtherCAT网络拓扑2.4 EtherCAT网络协议栈2.5 EtherCAT数据帧格式2.6 EtherCAT设备寻址方式2.7 分布式时钟(Distribute Clock)2.8 应用层(Application Layer)2.9 设备配置(Device Profile)2.10 主站设计2.11 从站设计3. 应用层(Application Layer)
复制链接
扫一扫
专栏目录
ethercat总结
02-14
ethercat总结,主要是Ethercat基础介绍,运行原理与常用协议说明
EtherCAT中文介绍
10-22
实时以太网EtherCAT中文介绍资料,英文不好的可以参考一下。EtherCAT(以太网控制自动化技术)是一个开放架构,以以太网为基础的现场总线系统,其名称的CAT为控制自动化技术(Control Automation Technology)字首的缩写。EtherCAT是确定性的工业以太网,最早是由德国的Beckhoff公司研发。
23 条评论
您还未登录,请先
登录
后发表或查看评论
EtherCAT Slave Stack Code (SSC)
05-28
BECKHOFF(倍福)官方提供EtherCAT从站协议栈代码生成工具
版本:SSC V5.12(Tool 1.4.2)
EtherCAT EoE
最新发布
weilan0818的博客
01-16
453
EoE:将以太网帧插入到 EtherCAT 协议中。EtherCAT协议中的以太网帧通过非循环邮箱通信进行传输。
Ethercat概念学习
weixin_43914278的博客
04-10
1583
最近我们要基于Ethercat技术进行开发,首先需要了解其基本原理,github上看到了有相关实现,一起来看看吧。
EtherCAT.rar
08-12
搜集的EtherCAT官方相关资料,学习EtherCAT参考资料, 协议说明等等
ethercat学习笔记1
08-08
代码的笔记放到第二章。1.8 松下的从站 PDO映射。6040h控制字这个控制字是用来控制伺服电机上使能的。6041状态字这个状态字读取伺服电机的状态。控制模式
EtherCAT介绍
热门推荐
人人都懂物联网
03-11
1万+
EtherCAT(以太网控制自动化技术)是一个以以太网为基础的开放架构的现场总线系统,EtherCAT名称中的CAT为Control Automation Technology(控制自动化技术)首字母的缩写。最初由德国倍福自动化有限公司(Beckhoff Automation GmbH) 研发。EtherCAT为系统的实时性能和拓扑的灵活性树立了新的标准,同时,它还符合甚至降低了现场总线的使用成本。
EtherCAT简介
weixin_41883890的博客
06-30
2394
EtherCAT(用于控制自动化技术的以太网)是Beckhoff(倍福)在2003年开发的实时以太网网络。它基于CANOPEN协议和以太网,但是与Internet通信或网络通信不同之处在于,它专门针对工业自动化控制进行了优化。这些标准由EtherCAT技术小组(简称ETG)定义和维护。使用OSI网络模型,以太网和EtherCAT依赖于相同的物理和数据链路层。除此之外,由于针对不同任务进行了优化,因此这两个网络在设计上有所不同。例如,以太网被设计为通过许多不同的节点发送大量数据。它能够与数十亿个单独的地址之间
【EtherCAT】一、入门基础
06-09
5266
EtherCAT(Ethernet Control Automation Technology)是一种高性能实时以太网通信协议,用于在工业自动化领域中进行实时控制和通信。它是由德国Beckhoff自动化公司在2003年开发的,并被国际电工委员会(IEC)标准化为IEC 61158标准。EtherCAT的设计目标是实现极低的通信延迟和高带宽的数据传输,以满足高速控制和数据采集的需求。它通过一种特殊的主从架构实现,其中一个主站(Master)负责协调整个网络,而从站(Slave)则负责提供输入输出功能。
工控协议解读之EtherCAT协议硬核分析(转自知乎“智能制造之家“)
qq_43599327的博客
09-07
7036
EtherCAT协议
ethercat_slave_stack_code_tool_SSC_V5i12.rar
08-13
EtherCAT Slave Stack Code Tool 倍福官方从站开发工具5.12版本。
Ethercat xml规范
05-12
Ethercat xml规范
EtherCAT示例文档
03-30
EtherCAT示例文档
EtherCAT主站配置过程分析
01-15
固高主站+一个固高GTHD伺服驱动Ethercat通讯建立全过程分析
ethercat技术
11-04
ethercat技术
EtherCAT SSC V5.12
03-29
Ethercat从机协议栈代码工具5.12版,工具tool版本:1.4.2。
ETHERCAT总线控制文件
08-10
ETHERCAT总线控制文件,让你快速学习总线!
Ethercat学习资料
04-02
以下是关于EtherCAT学习资料的一些推荐:
1. EtherCAT官方网站:https://www.ethercat.org/
官方网站提供了EtherCAT协议的详细介绍、技术规范、应用案例等内容,是学习EtherCAT的重要参考资料。
2. EtherCAT技术手册
EtherCAT技术手册是一本详细介绍EtherCAT协议的书籍,包括EtherCAT协议的基本原理、应用案例、网络拓扑结构等内容,对于学习EtherCAT协议非常有帮助。
3. EtherCAT开发者论坛:https://forum.ethercat.org/
EtherCAT开发者论坛是一个交流和分享EtherCAT开发经验的平台,里面有很多有关EtherCAT协议的讨论和问题解答,对于学习和开发EtherCAT应用非常有帮助。
4. EtherCAT开发工具
EtherCAT开发工具包括EtherCAT协议分析器、EtherCAT节点开发工具等,可以帮助开发者更好地理解和开发EtherCAT应用。
5. EtherCAT培训课程
EtherCAT培训课程可以帮助初学者快速入门EtherCAT协议,掌握EtherCAT网络的设计和应用,提高开发效率。
总之,学习EtherCAT需要系统的学习和实践,建议初学者从官方网站入手,逐步深入学习,同时结合实际应用场景进行实践。
“相关推荐”对你有帮助么?
非常没帮助
没帮助
一般
有帮助
非常有帮助
提交
pwl999
CSDN认证博客专家
CSDN认证企业博客
码龄16年
暂无认证
142
原创
1万+
周排名
3万+
总排名
68万+
访问
等级
6905
积分
1510
粉丝
898
获赞
150
评论
4870
收藏
私信
关注
热门文章
EtherCAT (学习笔记)
67258
Xenomai (学习笔记)
21769
Device Tree 详解
19630
Unwind 栈回溯详解
18367
Linux bpf 1.1、BPF内核实现
18328
分类专栏
Linux Kernel解析
51篇
Riscv
2篇
Trace
29篇
Arm Linux
11篇
Android
1篇
Linux 驱动三板斧
21篇
Linux Monitor
9篇
Security
12篇
Misc
6篇
VxWorks
6篇
Stability
2篇
Performance
1篇
Power
Virtualization
2篇
RealTime OS
3篇
Motion Control
3篇
AI
最新评论
RISCV 入门 (学习笔记)
中南甘帅问贴贴:
开芯院和日报的网址都寄掉了,不看好riscv的未来
Linux usb 4. Device 详解
努力学习LINUX的嵌入式开发工程师:
我怎么没早点看到你
Linux usb 7. Linux 配置 ADBD
-Promise810:
其实不用执行命令 我记得/etc/ 目录下有个启动脚本专门 执行命令的 你可以看看那个脚本怎么写的
Linux usb 7. Linux 配置 ADBD
一名不会算法的在职算法工程师:
老兄,你还记得执行什么命令吗?
Linux usb 7. Linux 配置 ADBD
-Promise810:
检查一下设备树配置 对应的 usb 接口是否支持从机模式 支持的话 这个usb控制器就能出现
您愿意向朋友推荐“博客详情页”吗?
强烈不推荐
不推荐
一般般
推荐
强烈推荐
提交
最新文章
Linux 驱动模块内存精简
Linux Phy 驱动解析
Linux mem 2.8 Kfence 详解
2023年1篇
2022年5篇
2021年29篇
2020年43篇
2018年26篇
2017年45篇
目录
目录
分类专栏
Linux Kernel解析
51篇
Riscv
2篇
Trace
29篇
Arm Linux
11篇
Android
1篇
Linux 驱动三板斧
21篇
Linux Monitor
9篇
Security
12篇
Misc
6篇
VxWorks
6篇
Stability
2篇
Performance
1篇
Power
Virtualization
2篇
RealTime OS
3篇
Motion Control
3篇
AI
目录
评论 23
被折叠的 条评论
为什么被折叠?
到【灌水乐园】发言
查看更多评论
添加红包
祝福语
请填写红包祝福语或标题
红包数量
个
红包个数最小为10个
红包总金额
元
红包金额最低5元
余额支付
当前余额3.43元
前往充值 >
需支付:10.00元
取消
确定
下一步
知道了
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝
规则
hope_wisdom 发出的红包
实付元
使用余额支付
点击重新获取
扫码支付
钱包余额
0
抵扣说明:
1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。 2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。
余额充值