imtoken钱包官方网站|示波器按钮

作者: imtoken钱包官方网站
2024-03-08 19:45:57

【示波器的基本使用】以及【示波器按键面板上各个按键含义的介绍】_示波器面板功能介绍-CSDN博客

>

【示波器的基本使用】以及【示波器按键面板上各个按键含义的介绍】_示波器面板功能介绍-CSDN博客

【示波器的基本使用】以及【示波器按键面板上各个按键含义的介绍】

最新推荐文章于 2023-06-11 21:13:34 发布

Old_Driver_Lee

最新推荐文章于 2023-06-11 21:13:34 发布

阅读量6.8w

收藏

855

点赞数

106

分类专栏:

仪器设备工具使用方法

文章标签:

示波器

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

本文链接:https://blog.csdn.net/Ace_Shiyuan/article/details/109364252

版权

仪器设备工具使用方法

专栏收录该内容

2 篇文章

24 订阅

订阅专栏

文章目录

一、面板按钮介绍1.1 面板介绍1.2 面板从上至下、从左至右,各常用按钮作用简述如下:1.2.1 【最上面一排按钮】:(1)【通用旋钮】【选择(Select)】【精细(Fine)】:(2)【光标】:(3)【亮度】:(4)【自动设置(Autoset)】:(5)【Signle】:(6)【Run/Stop】:

1.2.2 【Wave Inspector栏】(1)【测量(Measure)】:(2)【搜索(Search)】:(3)【测试(Test)】:(4)【放大镜】:(5)【设置/清除(▶/‖)】:(6)【旋钮(平移/缩放)】:(7)【←】:(8)【Set/Clear】:(9)【→】:

1.2.3 【水平栏】(1)【位置】:(2)【采集】:(3)【标度】:

1.2.4 【触发栏】(1)【菜单】:(2)【旋钮】:(3)【强制触发】:

1.2.5 【垂直栏】1.2.5.1 左边一列:(1)【数学(M)】:(2)【参考波形(R)】:(3)【总线(B1)】:(4)【总线(B2)】:(5)【AFG】:1.2.5.2 中间探针通道选择:(1)【1】,通道1:(2)【2】,通道2:(3)【3】,通道3:(4)【4】,通道4:(5)【通道2个旋钮:上旋钮】:(6)【通道2个旋钮:下旋钮】:

二、自动设置【Autoset】三、抓取波形(简称:抓波)

因为平时硬件用的不是特别多,每次使用完示波器,过段时间就又忘了,在此记录示波器的一些基本用法,以供后续查阅回忆。

文档会不定期进行更新。

一、面板按钮介绍

1.1 面板介绍

如下图:

1.2 面板从上至下、从左至右,各常用按钮作用简述如下:

1.2.1 【最上面一排按钮】:

(1)【通用旋钮】【选择(Select)】【精细(Fine)】:

【通用旋钮】:通用配置轮询选择按钮,旋转按钮可以轮询选择各种屏幕参数。 例如1:   当【光标】打开的时候,旋转两个旋钮可以分别移动【光标a】与【光标b】的位置。 例如2:   当按下【触发栏】中的【菜单】按键,屏幕左下方出现一排可选参数,   按下最左边【触发类型按钮】,出现很多可选项弹窗,   此时,旋转【通用旋钮】,就可以轮询选择各个参数。 【选择(Select)】:可以调整两个光标联动or单动,按一按扭一扭就会懂什么是联动了,此处不多赘述。 【精细(Fine)】:设置旋转通用旋钮时,光标移动的"快慢"程度。

(2)【光标】:

按下光标按键屏幕上会显示光标,有【横向光标】和【纵向光标】。 长按【光标】,屏幕下方会出现【光标参数设置】,包括【光标/波形】、【是否联动】、【水平光标/垂直光标】等。

(3)【亮度】:

应该是设置屏幕上波形与光标亮度吧,不太清楚,没太用过。

(4)【自动设置(Autoset)】:

配合右边按键面板右下方的【power】和【GND】可以自动设置出方波,自动设置探针合适的波形。 常常在探针参数调整的不成样子的时候,想要一键恢复常规设置的时候使用,具体方法见;【二、自动设置(复位)【Autoset】】小节。

(5)【Signle】:

暂时不动,后续补充。

(6)【Run/Stop】:

【按下,绿灯亮】,即:Run,表示实时显示当前波形状态【弹起,红灯亮】,即:Stop,表示停在当前面板波形状态,当抓取波形以后,想要对波形进行各种骚操作,又不想用指针一直怼着探测点,就可以使用该功能固定住当前波形。

1.2.2 【Wave Inspector栏】

暂时没用过,不太会用,以后再做补充

(1)【测量(Measure)】:

(2)【搜索(Search)】:

(3)【测试(Test)】:

(4)【放大镜】:

(5)【设置/清除(▶/‖)】:

(6)【旋钮(平移/缩放)】:

(7)【←】:

(8)【Set/Clear】:

(9)【→】:

1.2.3 【水平栏】

(1)【位置】:

左右旋转调整屏幕上探针信号的位置。按下以后信号波形居中。

(2)【采集】:

用的很少,不太懂,没怎么用过。

(3)【标度】:

左右旋转设置探针信号的时间宽度,可以简单理解为波形周期长短(即:波形拉宽、拉窄的骚操作)。

1.2.4 【触发栏】

(1)【菜单】:

抓取波形时,按下菜单按键,屏幕下方会弹出一系列参数设置,通过设置这些参数调整要抓取波形的合适参数。

(2)【旋钮】:

按下:复位之前在【菜单】中设置的波形抓取参数。旋转:调整抓取波形的【触发电平阈值】。

(3)【强制触发】:

1.2.5 【垂直栏】

1.2.5.1 左边一列:

(1)【数学(M)】:

(2)【参考波形®】:

(3)【总线(B1)】:

(4)【总线(B2)】:

(5)【AFG】:

1.2.5.2 中间探针通道选择:

(1)【1】,通道1:

按下在屏幕上显示1号通道探针信号线。

(2)【2】,通道2:

按下在屏幕上显示2号通道探针信号线。

(3)【3】,通道3:

按下在屏幕上显示3号通道探针信号线。

(4)【4】,通道4:

按下在屏幕上显示4号通道探针信号线。

(5)【通道2个旋钮:上旋钮】:

旋转上面旋钮,可以上下移动探针信号波形的位置。按下将信号波形居中。

(6)【通道2个旋钮:下旋钮】:

旋转下面旋钮,可以调整纵向方格的刻度,如1V、2V、5V等,(即:波形的拉高、拉低的骚操作)。

二、自动设置【Autoset】

使用示波器探针的时候,有时候觉得参数被调整的不成样子,可以通过【Autoset】按键来自动设置探针。步骤如下:

1、示波器开机,并按下对应探针通道按钮,打开探针,此处我用的2通道。 2、将探针正负极分别接到示波器右下方【power】和【GND】。 3、按下面板上【Autoset】按键。 4、出现方波,即可正常使用了。 5、备注:   通道旁有2个旋钮:【位置】【标度】     旋转【位置】旋钮:可以调整波形上下移动;     旋转【标度】旋钮:可以调试探针测试电压方格子的刻度:1V、2V、5V等。 6、如下图:

三、抓取波形(简称:抓波)

当需要抓取波形的时候,可以设置探针电压触发阈值,当电压大于某个电压点,直接锁定显示,步骤如下:

1、可选步骤:先进行【自动设置(Autoset)】操作,根据需要调整好电压刻度便于观察(如:抓取3.3v可以将刻度调为2v)。 2、在要抓取的电压点将探针固定好。 3、开始设置抓波参数:按下【触发栏】中的菜单按钮,屏幕下方出现一排抓波参数,有边沿、斜率、电平、模式等。 4、触发类型设置:按下屏幕下方最左边按钮【类型】(即:触发类型),通过旋转【通用栏】的旋钮,选择【边沿触发】。 5、触发方式设置:轮询按下【斜率】按键,依次选择:上升沿、下降沿、双边触发。 6、触发电平阈值设置:旋转【触发栏】的【电平旋钮】,设置电平阈值。   备注:电压阈值大小在屏幕下方【电平】按钮处会数字显示。 7、触发模式设置:屏幕下方最后边按键为【触发模式】:设置为【正常】。   备注:   【自动(无触发滚动)】:表示每次触发不会锁死当前触发的波形(即:触发的波形会转瞬即逝),也可以按一下该按键用来清空抓取到的波形。   【正常】:设置为正常以后,每次触发以后,波形会锁定在当前界面不动,如果波形不停地出现,则每次触发会滚动覆盖前一次抓取的波形(即:触发滚动)。 8、板卡上电or给测试点输送波形,开始抓波。如果出现符合条件的波形,屏幕波形就会直接锁定,如下图。 9、按下按键面板右上角【Run/Stop】(按下后变红色)锁死当前抓取到的波形。   然后可以通过一系列诸如:放大、缩小、移动、测量、居中、周期计算等一系列骚操作来操作波形了。 9、测试完成后,通过按键弹起【Run/Stop】(变绿色)显示实时波形,然后按下屏幕下方最右侧【模式】按钮,设置为【自动(无触发滚动)】模式,来清空当前抓取到的波形,以便进行下一次抓取。 10、如下图:

优惠劵

Old_Driver_Lee

关注

关注

106

点赞

855

收藏

觉得还不错?

一键收藏

知道了

0

评论

【示波器的基本使用】以及【示波器按键面板上各个按键含义的介绍】

文章目录一、面板按钮介绍1.1 面板介绍1.2 面板从上至下、从左至右,各常用按钮作用简述如下:1.2.1 【最上面一排按钮】:(1)【通用旋钮】【选择(Select)】【精细(Fine)】:(2)【光标】:(3)【亮度】:(4)【自动设置(Autoset)】:(5)【Signle】:(6)【Run/Stop】:1.2.2 【Wave Inspector栏】(1)【测量(Measure)】:(2)【搜索(Search)】:(3)【测试(Test)】:(4)【放大镜】:(5)【设置/清除(▶/‖)】:(6)【

复制链接

扫一扫

专栏目录

1102示波器使用方法_示波器你们用过吗?图文并茂教您使用方法!

weixin_39914243的博客

01-05

3035

示波器全名为阴极射线示波器。它是观察和测量电信号的一种电子仪器。示波器的作用是什么示波器的作用无可取代,它一直是工程师设计、调试产品的好帮手。但随着计算机、半导体和通信技术的发展,示波器的种类、型号越来越多,从而使示波器的作用得到详细的划分。1、广泛的电子测量仪器;2、测量电信号的波形(电压与时间关系);3、测量幅度、周期、频率和相位等参数;4、配合传感器,测量一切可以转化为电压的参量(如电流、电...

示波器说明书(英文详细版)

04-18

详细介绍了示波器及其使用方法。

TDS1000B and TDS2000B Series Digital Storage Oscilloscope

User Manual.

参与评论

您还未登录,请先

登录

后发表或查看评论

TDS1001B示波器详细图解使用教程

04-09

TDS1001B示波器的详细图解使用教程,讲解全面,详细明了,可以让你快速上手TDS1001B示波器

泰克示波器基本操作和按键详释

01-24

泰克示波器是目前使用较为多的一款示波器,如何能较好地使用它时需要好好掌握的.

示波器的基本使用方法

01-20

示波器是一种使用非常广泛,且使用相对复杂的仪器。示波器种类、型号很多,功能也不同,这些示波器使用方法大同小异。小编通过整理示波器使用方法,简单的给出示波器使用方法中基本的操作,希望能给大家带来帮助。

    某示波器的外形

    示波器使用方法简介

    1 荧光屏

    荧光屏是示波管的显示部分。屏上水平方向和垂直方向各有多条刻度线,指示出信号波形的电压和时间之间的关系。根据被测信号在屏幕上占的格数乘以适当的比例常数(V/DIV,TIME/DIV)能得出电压值与时间值。

    2 示波管和电源系统

    1)电源(Power)-示波器主电源开

示波器使用方法,正确使用示波器

热门推荐

qingfeng_博客

05-22

3万+

技新网的示波器视频介绍真心不错,请点击我直达。

课程内容

示波器波形怎么看

Cursor光标测量键的使用

触发电平旋钮让一个抖动的波形稳定

如何使用示波器的触发功能

用示波器探头上的调节旋钮来校准探头

示波器探头上10X和1X的含义

转载-- https://zhidao.baidu.com/question/430133298465166092.html

示波器是电子线路检测...

判断按钮是否触发单机时间_示波器怎么用才对?面板按钮功能都了解吗?这些细节很容易忽略!...

weixin_39599046的博客

11-24

431

了解了示波器的选购,今天我们来学习下示波器的控件作用。示波器面板上有很多按钮和旋钮,初识示波器的时候一脸茫然,和当年刚接触电脑的时候,看到键盘怎么也没办法把abcdefg键连贯起来一样。那个时候,师傅都是用模拟示波器的,看起来高大上,加上师傅不允许我们乱动示波器,感觉更加的神秘,吃不下睡不着也想知道其中的奥秘,今天我们一起来揭开示波器的面纱。示波器面板主要分成4大区:公共设置区,垂直控制区,水平控...

示波器面板按键说明

Coisini_ye的博客

02-17

2万+

示波器面板按键说明

【elabsim 示波器】基本使用以及示波器按键面板上主要按键含义的介绍

m0_52474147的博客

10-02

5874

【elabsim 示波器】基本使用以及示波器按键面板上主要按键含义的介绍。1.左下角 on/off开关2. 接入信号口1/22.1position旋钮 (用于调节波形图上下位置)2.2VOLTS/DIV旋钮(用于调节波形图的电压分度值)2.3CH1/2 信号接入口2.4 CHIMENU1/2按钮(用于选择观察CH1/2波形)3.时间坐标轴相关按钮3.1 position旋钮 (用于调节时间坐标轴位置)3.2 SEC/DIV旋钮 (用于调节时间单位大小)

【仪器使用操作笔记】 TDS1012示波器基础原理与使用

qq_64257614的博客

06-11

3690

学习使用老旧战损版示波器,型号为TDS1012,0基础可学会,觉得有用就收藏吧

示波器参数理解

qlexcel的专栏

06-27

3万+

示波器的三个重要参数是:带宽、采样率、存储深度。

1.带宽定义:示波器带宽的定义没有变,就是输入一个正弦波,保持幅度不变,增加信号频率,当示波器上显示的信号是实际信号幅度的70.7%(即3dB衰减)的时候,该对应的频率就等于示波器带宽。

100MHz的带宽在测量100MHz的正弦波时,幅度会下降到原来的0.7,但是100mhz带宽的示波器不能测100mhz的方波,因为方波由基波和奇次谐

模拟示波器的使用简介

01-20

 1、MOS-620/640双踪示波器前面板简介MOS-620/640双踪示波器的调节旋钮、开关、按键及连接器等都位于前面板上,如图6.1.27所示,其作用如下:  (1)示波管操作部分  6——“POWER”:主电源开关及...

元器件应用中的模拟示波器的使用简介

10-15

 1、MOS-620/640双踪示波器前面板简介MOS-620/640双踪示波器的调节旋钮、开关、按键及连接器等都位于前面板上,如图6.1.27所示,其作用如下:  (1)示波管操作部分  6——“POWER”:主电源开关及...

简易示波器原理图和PCB设计

09-03

疫情期间闲来无事,正好学习STM32F407,因此设计、制作了简易示波器,以助学习。 1、原理图 (1)单片机,选择STM32F407VET6,采用SWD方式仿真及程序烧写。五路独立按键和两个LED指示灯;ADC PA5端口,定时采样; ...

泰克示波器MDO3000-系列-用户手册

10-10

泰克示波器MDO3000 中文版示波器说明书,根据上面说的来使用一下简单多了

基于C8051F020的示波器监控程序的设计

08-07

设计采用高性能单片机C8051F020为控制芯片,监控示波器面板上40个按键、3个编码开关及4个电位器的状态。分别介绍了键盘、编码开关和电位器的工作原理,以及其与单片机连接的硬件电路及软件编程的实现。按键部分采用...

嵌入式系统/ARM技术中的基于C8051F020的示波器监控程序的设计

10-23

摘要:设计采用高性能单片机C8051F020为控制芯片,监控示波器面板上40个按键、3个编码开关及4个电位器的状态。分别介绍了键盘、编码开关和电位器的工作原理,以及其与单片机连接的硬件电路及软件编程的实现。按键...

数字存储示波器的设计与制作报告

03-21

本文介绍了一种基于单片机和FPGA的简易数字存储示波器的设计方案。与传统模拟示波器相比,数字存储示波器不仅具有可存储波形、体积小、功耗低、使用方便等优点,而且还具有强大的信号实时分析处理功能。在电子测量...

C8051F020的示波器监控程序设计

10-24

设计采用高性能单片机C8051F020为控制芯片,监控示波器面板上40个按键、3个编码开关及4个电位器的状态。分别介绍了键盘、编码开关和电位器的工作原理,以及其与单片机连接的硬件电路及软件编程的实现。按键部分采用...

tds1012示波器使用方法图解

最新发布

11-29

TDS1012示波器是一种专业的电子测试仪器,用于观察和分析电子信号的波形。使用TDS1012示波器需要按照以下步骤进行操作:

第一步,将TDS1012示波器连接上电源,并插入待测信号的输入端。确保示波器和信号源的接地端连接正确,以避免电路短路或测量出错误的波形。

第二步,打开TDS1012示波器的电源开关,然后调整屏幕显示的亮度和对比度,使得波形图像清晰可见。

第三步,设置示波器的触发模式和触发电平。可以根据待测信号的特性选择合适的触发模式,并调节触发电平使得波形图像能够稳定地显示在屏幕上。

第四步,选择合适的时间和电压测量范围。调整示波器的水平和垂直控制旋钮,使得波形图像能够完整地显示在屏幕上,并且不会出现失真或裁切的情况。

第五步,采集数据并进行分析。通过示波器的光标功能或者自动测量功能,可以对波形的频率、幅度、周期等参数进行精确的测量和分析。

最后,操作完成后,记得关闭示波器的电源开关,拔掉输入信号的连接线,并将示波器进行清洁和保养,以确保下次使用时能够正常工作。

通过以上的步骤,可以清晰地了解TDS1012示波器的使用方法,并有效地进行电子信号的观测和分析。

“相关推荐”对你有帮助么?

非常没帮助

没帮助

一般

有帮助

非常有帮助

提交

Old_Driver_Lee

CSDN认证博客专家

CSDN认证企业博客

码龄7年

暂无认证

130

原创

3万+

周排名

4万+

总排名

65万+

访问

等级

5616

积分

411

粉丝

681

获赞

156

评论

3379

收藏

私信

关注

热门文章

【示波器的基本使用】以及【示波器按键面板上各个按键含义的介绍】

68168

STM32操作访问flash,包括写入数据到flash和从flash读取数据

65494

频谱分析仪的基本使用

42903

STM32内存大小与地址的对应关系以及计算方法

31624

SecureCRT导出配置 & 导入配置

27463

分类专栏

Shell脚本

1篇

Nand Flash

2篇

Qualcomm

U-Boot

U-Boot命令

1篇

Linux命令

8篇

Linux驱动实践

2篇

linux驱动学习

16篇

Linux应用

2篇

软件工具、虚拟机等

11篇

Vim

12篇

Makefile

4篇

正则表达式

3篇

硬件电路

3篇

仪器设备工具使用方法

2篇

QNX

11篇

STM32

21篇

Git

3篇

c语言

12篇

DSP

1篇

Windows设置与办公

12篇

Markdown与CSDN

3篇

最新评论

stm32不小心把SWD和JTAG都给关了,程序下载不进去,解决办法

weixin_43470335:

可以连续按复位键同时连续按下载可以解决全部禁用JTAG和SW的问题

VMware设置任务栏图标显示与隐藏

scydang:

在win11操作系统上实测有效。

STM32操作访问flash,包括写入数据到flash和从flash读取数据

口袋里のInit:

有几个疑问:

1. 攃的输入地址必须按页对齐,并且一擦就是一页,分两次操作一个page,岂不是第二次就把第一次的又擦掉了?

2. 写函数里,循环次数*单次写入字节数 != 总字节数,半字写入,为什么循环里自加1,又不是写一个字节;

3. 写入数据,能否是任意地址和任意长度, 即写入起始地址是奇数?因为你不能确保用你接口的工程师数据正好必须是偶数。

STM32内存大小与地址的对应关系以及计算方法

qq_48211392:

您好,楼主的文章中有一点我不太清楚。我认为Flash Memory最大内存 = 地址差+1,因为起始地址0x08000000也可以存储一个字节,所以计算公式为2^16(0x00010000)+2^16-1(0x0000FFFF)+1 = 2^17;

MDK常见错误记录

wV587666666:

试过了,错误数量没有减少,而且错误数量是344

您愿意向朋友推荐“博客详情页”吗?

强烈不推荐

不推荐

一般般

推荐

强烈推荐

提交

最新文章

【Shell脚本】读取大量DDR寄存器的值

How to make nand flash factory bin image?

转载:上传网易云盘音频,不会自动改名

2024年1篇

2023年2篇

2022年3篇

2021年12篇

2020年60篇

2019年27篇

2018年9篇

2017年22篇

目录

目录

分类专栏

Shell脚本

1篇

Nand Flash

2篇

Qualcomm

U-Boot

U-Boot命令

1篇

Linux命令

8篇

Linux驱动实践

2篇

linux驱动学习

16篇

Linux应用

2篇

软件工具、虚拟机等

11篇

Vim

12篇

Makefile

4篇

正则表达式

3篇

硬件电路

3篇

仪器设备工具使用方法

2篇

QNX

11篇

STM32

21篇

Git

3篇

c语言

12篇

DSP

1篇

Windows设置与办公

12篇

Markdown与CSDN

3篇

目录

评论

被折叠的  条评论

为什么被折叠?

到【灌水乐园】发言

查看更多评论

添加红包

祝福语

请填写红包祝福语或标题

红包数量

红包个数最小为10个

红包总金额

红包金额最低5元

余额支付

当前余额3.43元

前往充值 >

需支付:10.00元

取消

确定

下一步

知道了

成就一亿技术人!

领取后你会自动成为博主和红包主的粉丝

规则

hope_wisdom 发出的红包

实付元

使用余额支付

点击重新获取

扫码支付

钱包余额

0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。 2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值

示波器的使用(界面、原理、操作及眼图)建议收藏! - 知乎

示波器的使用(界面、原理、操作及眼图)建议收藏! - 知乎切换模式写文章登录/注册示波器的使用(界面、原理、操作及眼图)建议收藏!华启学院通信达叔学通信,找达叔,通信人在线​示波器的使用(界面、原理、操作及眼图)建议收藏!文章来源于微信公众号:华启学院本文包含三部分内容,分别为:一、示波器面板及功能键介绍二、示波器的工作原理三、示波器的使用教程四、眼图分析一、示波器面板及功能键介绍 ZDS3024 无 VGA 输出接口,对应的位置为 RS232 通讯接口。安全锁:用户可使用安全锁将示波器锁在固定位置。沿与后面板垂直的方向对准上图“防盗锁孔”将锁头插入,顺时针旋转钥匙锁定示波器,然后拔出钥匙。注意,不要将 其它物品插入防盗锁孔以免损坏仪器。 可调支架:调节示波器的倾斜角度,便于更好的操作和观察显示屏,向外打开支撑 脚让示波器倾斜或向内关闭支撑脚让示波器直立。触发输出:将连接线的 BNC 母头接口与触发输出接口连接,顺时针旋转,两接口卡 住即可。VGA 接口:该接口可用于外接显示器,ZDS3024 此接口为 RS232 串口。LAN 接口:将网线接口对准 LAN 接口连接,可进行网络通讯。 USB Device:将 standard B 类型 USB 线接入 USB Device 接口即可使用。 AC 电源插口:将符合规定的电源线对准电源接口连接即可。软键多功能旋钮区 多功能旋钮区主要用于波形灰度显示、 亮度调节和波形光标测量的调节。波形探测区主要用于对波形进行测量、搜索、缩 放、分段存储和标记。水平控制区主要用于波形时基档位和波形偏移的调节(包括主时基和 副时基)。快捷功能区主要对波形进行【一键清除】、【一键 轨迹】、【硬件滤波】和【一键截屏】的操作。运行控制区被用于控制示波器采样的运行/停止,功能参数的复位。多功能控制区垂直控制区用于在垂直方向上控制波形的位置、波形的扩展或压缩显示。触发功能区面板组件二、示波器的工作原理视频连接:https://v.qq.com/x/page/a0631x4abvd.html三、示波器的使用视频连接:四、关于眼图视频连接:(a)无码间串扰的双极性基带波形(b)有码间串扰的双极性基带波形(c)无码间串扰的眼图(d)有码间串扰的眼图眼图中眼睛张开越大(抽样时刻最大信号畸变小),且眼图越端正(过零点畸变小),表明码间串扰越小,反之,码间串扰越大。眼图对于展示数字信号传输系统的性能提供了很多有用的信息:可以从中看出码间串扰的大小和噪声的强弱, 有助于直观地了解码间串扰和噪声的影响,评价一个基带系统的性能优劣;可以指示接收滤波器的调整,以减小码间串扰。1.最佳抽样时刻应在“眼睛”张开最大的时刻。2.对定时误差的灵敏度可由眼图斜边的斜率决定。斜率越大,对定时误差就越灵敏。3.在抽样时刻上,眼图上下两分支阴影区的垂直高度,表示最大信号畸变。4.眼图中央的横轴位置应对应判决门限电平。5.在抽样时刻上,上下两分支离门限最近的一根线迹至门限的距离表示各相应电平的噪声容限,噪声瞬时值超过它就可能发生错误判决。6.对于利用信号过零点取平均来得到定时信息的接收系统,眼图倾斜分支与横轴相交的区域的大小,表示零点位置的变动范围,这个变动范围的大小对提取定时信息有重要的影响。文章来源于微信公众号:华启学院发布于 2019-11-04 12:01示波器微电子仪器仪表​赞同 239​​4 条评论​分享​喜欢​收藏​申请

示波器的使用方法 - 示波器的基本实验 - 知乎

示波器的使用方法 - 示波器的基本实验 - 知乎切换模式写文章登录/注册示波器的使用方法 - 示波器的基本实验是德科技 Keysight Technologies​已认证账号本文适用于在校电子工程和物理专业学生的示波器实验室指南和教程。本示波器实验指南和教程适用于随教育培训套件 (DSOXEDK) 一同许可的 Keysight InfiniiVision 2000, 3000 X 系列示波器和4000 X 系列示波器。基本示波器和波形发生器测量实验示波器基本实验 #1:对正弦波执行测量示波器基本实验 #2:了解示波器触发的基本知识 示波器基本实验 #3:触发噪声信号示波器基本实验#4:记录和保存示波器测试结果示波器基本实验 #5:补偿 10:1 无源探头示波器基本实验 #6:使用内置函数发生器生成波形示波器入门使用方法 - 什么是示波器?对于如今的模拟和数字电路来说,示波器是进行电压和定时测量的重要工具。当您最终从电子工程学校毕业,进入电子行业工作时,您可能会发现在测试、验证和调试设计方面,使用示波器这一测量工具的频率要比任何其他仪器都要高得多。即使是在特定大学里学习电子工程或物理专业的课程期间,示波器这一测量工具也是在各个电路实验中用来测试和验证实验作业及设计的最常用仪器。遗憾的是,许多学生永远都不能完全掌握如何使用示波器。他们的使用模式通常是某个随机旋钮和按钮,直到示波器显示屏上奇幻般出现一个与他们要寻找的效果接近的图片。但愿在完成这一系列简短的实验后,您会对示波器是什么以及如何更有效地使用它有了更好的了解。那么,什么是示波器?示波器是一种电子测量仪器,可以在无干扰的情况下监控输入信号,随后以图形方式采用简单的电压与时间格式显示这些信号。您的教授在其学生时代使用的这类示波器可能就是完全基于模拟技术的示波器。这些采用早期技术的示波器通常称为模拟示波器,具有限定的带宽,不执行任何种类的自动测量,而且要求输入信号是重复的 (连续出现并重复输入信号)。您将在这一系列实验中 (可能会贯穿大学及研究生学习的其余时间)使用的这类示波器称为数字存储示波器,有时仅称为 DSO。或者,您可以使用混合信号示波器,该示波器将传统的 DSO 测量模拟与逻辑分析测量相结合,有时称为 MSO。请注意,所有的数字实时示波器基本上只有DSO和MSO之分。其它的叫法都是在这两种示波器的基础上增加某些功能而已。今天的 DSO 和 MSO 可以捕获并显示重复信号或单冲信号,它们通常包括一系列自动测量和分析功能,借助这些功能您可以比您的教授在学生时代更快速、更准确地体现设计和学生实验的特征。快速了解如何使用示波器以及示波器有何功能的最佳方式是首先了解示波器上的一些最重要的控件,然后只需开始使用其中一个测量一些基本的信号,如正弦波。获得 DSOXEDK 教育培训套件选项的许可后,Keysight TechnologiesInfiniiVision 2000 和 3000 X 系列示波器(在图 1 中显示)便会产生模拟和数字培训信号。我们将在这一系列简短实验中使用其中许多信号,帮助您了解如何使用示波器这一最重要的电子信号测量仪器。Keysight InfiniiVision 2000/3000 X 系列示波器执行示波器测量时的第一项任务通常是将示波器探头连接在测试设备与示波器的输入 BNC 接口之间。示波器探头在测试点提供相对较高的输入阻抗端子功能(高电阻,低电容)。高阻抗连接对于将测量仪器与测试电路分隔开来非常重要,因为我们不希望示波器及其探头改变测试信号的特征。有多种不同种类的示波器探头可用于特定类型的测量,但是您今天将使用的探头是最常用的探头类型,称为 10:1 无源电压探头,如图 2 所示。“无源”仅意味着此类型的探头不包括任何“有源”组件,如晶体管和放大器。“10:1”意味着此探头将以 10 为常量衰减示波器输入中接收的输入信号。图2. 无源 10:1 电压探头使用标准的 10:1 无源探头时,应在信号测试点与地面之间执行所有的示波器测量。换句话说,您必须 将探头的接地夹接地。若被测点是浮地的,我们不建议使用此类探头直接测量电路中组件之间的相对电压。如果需要测量未接地组件内的电压,则在使用示波器的两条通道相对于地面测量组件两端的信号时,可以使用示波器的减法数学函数(在实验 #13 期间介绍),或者可以使用特殊的差分有源探头。另外还应注意,绝不应使示波器的部件成为被测电路功能结构的一部分。图 3 显示了使用示波器的默认 1 MΩ 输入选择 (这是使用此类探头时必需的)连接到示波器时的 10:1 无源探头的电子模型。请注意,许多较高带宽的示波器还具有用户可选择的 50 Ω 输入端子选择,这种选择通常用于有源探头端子和/或使用 50 Ω BNC 同轴电缆从 50 Ω 电源直接输入信号时。图3. 连接到示波器的 1 MΩ 输入阻抗的 10:1 无源探头的简化示意图尽管无源探头和示波器的电子模型包括固有/寄生电容 (非设计)以及特意设计的补偿电容网络,但是现在让我们忽略这些电容元件,并分析低频或直流电输入条件下此探头/示波器系统的理想信号行为。从探头/示波器电子模型中删除所有的电容组件后,只剩下与示波器的 1 MΩ 输入阻抗串联的 9 MΩ 探头端部电阻。探头端部的净输入电阻则为 10 MΩ。使用欧姆定律,您会发现示波器输入处接收的电压电平将为探头端部处电压电平的 1/10 (Vscope = Vprobe x (1 MΩ/10 MΩ))。这意味着,使用 10:1 无源探头时,示波器测量系统的动态范围已被扩展。换句话说,与使用 1:1 探头测量的信号相比,您测量的信号幅度可高出 10 倍。此外,示波器测量系统 (探头 + 示波器)的输入阻抗将从 1 MΩ 增加到 10 MΩ。这是好事,因为较低的输入阻抗可以负载测试设备 (DUT),但是会更改 DUT 内的实际电压电平 (这不是好事)。尽管净输入阻抗 10 MΩ 确实很大,但是您必须记住,必须要考虑到与探测设备的抗阻相关的这一负载阻抗量。例如,具有 100 MΩ 反馈电阻器的简单运算放大器电路可能会在示波器上提供一些错误的读数。如果您在电路实验中使用 Keysight 3000 X 系列示波器,则此示波器将自动检测并将探头衰减常数设置为 10:1。如果您使用 Keysight 2000 X 系列示波器,则必须手动输入探头衰减常数 (10:1)。示波器知道探头衰减常数后 (自动检测或手动输入),会提供所有垂直设置的补偿读数,以便将所有的电压测量引用到探头端部的无衰减输入信号。例如,如果您探测 10 Vpp 信号,则在示波器输入处收到的信号实际上仅为 1 Vpp。但是,由于示波器知道您使用的是 10:1 分压器探头,因此示波器在执行电压测量时将报告看到了 10 Vpp 的信号。到达实验 #5 (补偿您的 10:1 无源探头)时,我们将回过头研究此无源探头模型,并说明电容组件。探头/示波器电子模型中的这些元件将影响组合示波器和探测系统的动态/交流电性能。示波器前面板首先让我们了解示波器上最重要的控件/旋钮。在示波器顶部附近是“水平”控件,如图 4 所示。较大的旋钮用于设置水平刻度调整 (秒/格)。此控件可用于设置显示波形的 X 轴刻度调整。一个水平“格”为每个垂直网格线之间的 Δ-time。如果要查看更快的波形 (频率较高的信号),则将水平刻度调整设置为较小的 sec/div 值。如果要查看更慢的波形 (频率较慢的信号),则通常将水平刻度调整设为较高的 sec/div 设置。“水平”部分中较小的旋钮可用于设置波形的水平部分。换句话说,使用此控件可以左右移动波形的水平位置。示波器的水平控件(s/div 和位置)通常称为示波器的主要“时基”控件。值得注意的是,旋钮都是可以按下的。用来调整时基设置的旋钮按下是在精调与粗调之间切换。用来控制水平位移的旋钮按下可以迅速将波形的偏移归零。图4. 示波器水平 (X 轴)控件示波器底部附近垂直部分(在输入 BNC 的正上方)中的控件/旋钮(请参考图 5)可用于设置示波器的垂直刻度调整。如果使用双通道示波器,则有两对垂直刻度调整控件。如果使用四通道示波器,则有四对垂直刻度调整控件。垂直部分中每个输入通道的较大旋钮可用于设置垂直刻度调整系数 (伏/格)。这是波形的 Y 轴图形刻度调整。一个垂直“格”为每个水平网格线之间的 Δ-volts。如果要查看相对较大的信号 (高峰峰值电压),则通常将 Volts/div 设置设为相对高的值。如果查看小的输入信号电平,则应将 Volts/div 设置设为相对低的值。垂直部分中每个通道的较小控件/旋钮是位置/偏移控件。您可以使用此旋钮在屏幕上上下移动波形。垂直调整旋钮也是可以按下的。用来调整通道垂直分辨率的旋钮按下是在精调与粗调之间切换。用来控制垂直位移的旋钮按下可以迅速将波形的垂直偏移归零。图5. 示波器垂直 (Y 轴)控件另一个非常重要的示波器设置变量是触发电平控件/旋钮,如图 6 所示。此控制旋钮位于示波器前面板中心附近,标记为触发的部分下方。触发可能是示波器被了解得最少的方面,但该功能是示波器中您应了解的最重要功能之一。在进入实践实验时,我们将更为详细地介绍示波器触发。图6. 示波器触发电平控件阅读下面实验中的说明时,任何时候都会看到一个用方括号括住的粗体字,如 [ 帮助],这是位于指示波器右侧的一个前面板键 (或按钮)。按下该键时,具有与该特定前面板功能关联的“软键”选择的唯一菜单将被激活。“软键”是位于示波器显示屏下方的 6 个键/按钮。根据激活的菜单,这些键的功能会发生变化。现在找到图 7 中显示的 Entry 控制旋钮。这是示波器显示屏右侧位于黑色阴影区域中的旋钮。我们会非常频繁地使用此旋钮来更改一系列不具备专用前面板控件的设置变量和选择。选择软键时,任何时候您都会看到绿色的弯曲箭头 ,这指示 Entry 旋钮可用于控制此变量。请注意,此旋钮还用于设置波形亮度级别。让我们开始使用示波器进行测量!图7. 示波器通用 Entry 控件示波器基本实验 #1:对正弦波执行测量在第一个实验中,您将学习如何使用示波器的水平和垂直刻度调整控件来正确设置示波器,从而显示重复正弦波。此外,还将学习如何对此信号执行一些简单的电压和定时测量。1 将一个示波器探头连接到通道 1 输入 BNC 和标记为“Demo1”的输出端子之间,如图 8 所示。将此探头的接地夹连接到中心端子 (接地)。图8. 将通道 1 和通道 2 输入之间的探头连接到培训信号输出端子 2. 将第二个示波器探头连接到通道 2 输入 BNC 和标记为“Demo2”的输出端子之间,如图 8 所示。将此探头的接地夹连接到中心端子。3 按前面板右上部分附近的 [默认设置] 键。默认设置会将示波器置于工厂预设配置中。这不仅会将示波器的 X 和 Y 刻度调整系数设置为预设值,而且还会关闭某个学生可能使用的任意特殊操作模式。4 按 [帮助] 前面板键 (在通道 2 垂直控件旁边)。5 按示波器显示屏下方的培训信号软键。6 使用 Entry 旋钮选择正弦信号 (列表顶部),然后按输出软键将其打开。现在,Demo1 端子上应存在正弦波,但是还不能使用示波器的默认刻度调整系数来识别。我们现在将调整示波器的垂直和水平设置,以扩展此波形并将此波形位于显示屏的中心。7 顺时针旋转通道 1 V/div 旋钮,直到您看到显示的波形覆盖屏幕一半以上。正确的设置应为 500 mV/div,在显示屏左上角附近显示为“500mV/”。8 顺时针旋转 s/div 旋钮 (“水平”部分中的大旋钮),直到您观察到显示屏上出现正弦波的两个以上周期。正确的设置应为 50 ns/div,在显示屏顶部中间附近显示为“50.00ns/”。您的示波器的显示屏现在应与图 9 类似。至此我们完成了时基的基本设置。图9 用于查看正弦波培训信号的初始设置9 旋转“水平”位置旋钮,左右移动波形。10 按“水平”位置旋钮,将其设回到零 (在中心屏幕上显示为 0.0 秒)。11 旋转通道 1 垂直位置旋钮,上下移动波形。请注意,左侧的地指示器也会上下移动,并告知我们此波形上 0.0 伏 (接地电平)所在的位置。12 按通道 1 垂直位置旋钮将接地 (0.0 V) 设回中心屏幕。现在,让我们对此重复正弦波执行一些测量。请注意,示波器的显示屏基本上是 X - Y 图形。在我们的 X 轴(水平)上,我们可以测量时间,在我们的 Y 轴(垂直)上,我们可以测量电压。在许多电子工程或物理课程作业中,您可能计算过电子信号并在图纸上采用类似的格式画过图,只不过是静态的。或者,您或许使用过各种 PC 软件应用程序自动画过波形图。将重复输入信号应用于示波器时,我们可以观察到波形的动态 (持续更新)图。我们的 X 轴包含分布于屏幕上的 10 个主要格,每个主要格均等于 sec/div 设置。在这种情况下,每个水平主要格均表示 50 纳秒(假设示波器的时基设置为 50.0 ns/div,如前文所述)。由于屏幕中有 10 个格,因此示波器从显示屏的左侧到显示屏的右侧显示 500 ns(50.0 ns/div x 10 格)。请注意,每个主要格还被分为 4 个次要格,在中心水平轴上显示为勾选标记。每个次要格则表示 1/4 div × 50 ns/div = 12.5 ns。我们的 Y 轴包含 8 个主要格(垂直方向),每个主要格均等于 V/div 设置,应设置为 500 mV/div。在此设置下,示波器可以测量高为 4 Vp-p(500 mV/div x 8 格)的信号。每个主要格分为 5 个次要格。每个次要格 (在中心垂直轴上表示为勾选标记)则均表示 100 mV。13 通过将一个上升沿 (中心屏幕)的 0.0 V 电平到下一个上升沿的 0.0 V 电平的格 (主要和次要)数累加起来,然后乘以 s/div 设置 (应为 50.0 ns/div),估算其中一个正弦波的周期 (T)。T= _____________14 此正弦波的频率是多少 (F = 1/T)。F = _____________现在,让我们估算这些正弦波的峰峰值电压电平,但是首先,让我们对垂直设置进行几项较小调整,从而帮助我们更准确地执行此测量。15 调整通道 1 垂直位置旋钮 (亮起的“1”键下面较小的旋钮),直到正弦波的负峰与其中一个主要格线 (或网格线)相交。16 接下来,调整水平位置旋钮 (前面板顶部附近的较小旋钮),直到正弦波的一个正峰与具有次要格勾选标记的中心垂直轴相交。17 现在,通过将正弦波的负峰到正峰的格 (主要和次要)数累加起来,然后乘以 V/div 设置 (应为 1 V/div),估算此正弦波的峰峰值电压。Vp-p = _____________现在,让我们使用示波器的“光标”功能来执行上述相同的电压和定时测量,但不必累加格数,然后乘以刻度调整系数。首先,找到前面板“测量”部分中的“ 光标”旋钮,如图 10 所示。图 10 . 测量光标旋钮18 按光标旋钮;然后旋转此旋钮,直到“X1”突出显示;接着再次按此旋钮进行选择 (如果您不是在旋转选中“X1”光标后第二次按此旋钮,可能会出现超时现象,随后 X1 光标将自动被选中,且该菜单将关闭)。19 旋转光标旋钮,直到 X1 光标 (#1 定时标识)在特定电压电平下与正弦波的某一上升沿相交。提示:在波形的某一点对齐光标,波形在该点与某一水平网格线交叉。20 再次按光标旋钮;旋转此旋钮直到“X2”突出显示;然后再次按此旋钮进行选择。21 旋转光标旋钮,直到 X2 光标 (#2 定时标识)在相同电压电平下与正弦波的下一上升沿相交。22 再次按光标旋钮;旋转此旋钮直到“Y1”突出显示;然后再次按此旋钮进行选择。图 11. 使用示波器的光标测量23 旋转光标旋钮,直到 Y1 光标 (#1 电压标识)与正弦波的负峰相交。24 再次按光标旋钮;旋转此旋钮直到“Y2”突出显示;然后再次按此旋钮进行选择。25 旋转光标旋钮,直到 Y2 光标 (#2 电压标识)与正弦波的正峰相交。26 此信号的周期、频率和峰峰值电压 (光标读数在显示屏的右侧)是多少?ΔX = _____________ 1/ΔX = _____________ ΔY(1) = _____________用于测量示波器上的时间和电压的最常用方法是我们最初使用的“将格累加起来 ”方法。尽管必须将格累加起来,然后乘以示波器设置,但是熟悉其示波器的工程师可以快速估算信号的电压和定时参数,有时大致的估算是了解信号是否符合测试要求快速的手段。使用光标进行测量更准确一点,并能从测量中去除猜测因素。今天的大多数示波器还提供了一种自动执行许多参数测量的更准确且更快的方式。当我们开始对一些数字信号执行某些测量时,我们将回过头使用实验 #10 期间示波器的自动参数测量。但是现在,我们需要回过头来了解示波器的触发功能。示波器基本实验 #2:了解示波器触发的基本知识正如前面所说,示波器触发可能是示波器最重要的功能。如果要从示波器测量中获得最多收益,应了解此功能。尝试对今天许多更复杂的数字信号执行测量时,此功能特别重要。遗憾的是,示波器触发是示波器操作中被了解得最少的方面。可将示波器“触发”看作“同步图片获取”。当示波器捕获并显示重复输入信号时,每秒可获取输入信号的数万个图片。为了查看这些波形 (或图片),必须将图片获取与“某一刻”同步。“某一刻”是输入信号中的唯一时间点,或者在使用示波器的多个通道时,是基于输入信号的布尔组合的唯一时间点 (逻辑“码型 ”触发)。示波器触发的模拟情景是赛马比赛终点的照片。尽管不是重复事件,相机快门必须与头马鼻子通过终点线的那一刻同步。在赛马开始和结束之间的某一时间随机获取赛马图片,类似于查看示波器上未触发的波形。要更好地了解示波器触发,让我们对实验 #1 中使用的我们熟悉的正弦波执行更多测量。1 确保您的两个示波器探头始终分别连接到标记为 Demo1 和 Demo2 的端子与通道 1 和通道 2 输入 BNC 之间。2 按下示波器前面板上的 [默认设置]。3 按 [帮助],然后按培训信号软键。4 使用 Entry 旋钮选择“正弦”培训信号,然后按下输出软键将其打开。5 将通道 1 的 V/div 设为 500 mV/div。6 将示波器的时基设置为 50.00 ns/div。7 按 [触发] 前面板键。您的示波器的显示屏现在与图 12 类似。如果使用示波器的默认触发条件,则此信号与 0.0 V 电平(触发电平设置)交叉时,示波器应在通道 1 探测并捕获的正弦波的上升(斜率选择)沿(触发类型选择)上触发。如果水平位置控件设置为 0.0 秒 (默认设置),则此时间点显示在中心屏幕上。在触发点之前捕获的波形数据 (显示屏左侧)被视为负时间数据,而在触发之后捕获的波形数据(显示屏右侧)被视为正时间数据。图12. 于 0.0 伏时在通道 1 的上升沿上触发示波器请注意,显示屏顶部附近“填充的”橙色三角形指示触发时间点 (0.0 s) 所在的位置。如果调整水平延迟/位置,此橙色三角形会从中心屏幕移走。中心屏幕上的“空心”橙色三角形 (仅在延迟/位置不是 0.0 s 时才可见)指示使用示波器的默认“中心”参考时延迟设置的时间位置。8 顺时针旋转触发电平旋钮,可增加触发电平电压设置。 9 逆时针旋转触发电平旋钮,可减小触发电平电压设置。增加触发电平电压设置时,应观察到正弦波在一定时间内会向左侧移动。如果减少触发电平电压设置,则正弦波会向右侧移动。最初旋转触发电平旋钮时,水平的橙色触发电平指示器将出现,实际触发电压设置始终显示在示波器显示屏的右上角。如果停止旋转触发电平旋钮,则橙色触发电平指示器将超时,且在几秒钟后会消失。但是,左侧的波形格线区域外侧仍会显示一个黄色的触发电平指示器,以指示触发电平相对于波形的设置位置。10 旋转触发电平旋钮,以将触发电平设置为恰好 500 mV(在中心屏幕上 1 格)。请注意,实际触发电平显示在显示屏的右上角。11 按斜率软键,然后选择下降沿触发条件。现在,正弦波应反转 180 度,波形的下降沿将与中心屏幕同步,如图 13 所示。图 13. 在 + 500 mV 下于正弦波的下降沿上触发12 增加触发电平电压设置,直到橙色电平指示器位于正弦波正峰上方 (大约 +1.5 V)。在正弦波上方设置触发电平时,示波器的采集和显示 (重复图片获取)不再与输入信号同步,因为示波器在此特定触发电平设置下找不到任何边沿交叉。您示波器的显示屏现在与图 14 类似。示波器现在处于“自动触发”模式下。图14. 在输入信号上方设置触发电平时自动触发自动触发是示波器的默认触发模式。当示波器使用自动触发模式时,如果示波器在一段时间 (时间会发生变化且取决于示波器的时基设置)后找不到有效的触发条件(在这种情况下正弦波的边沿交叉),则示波器将生成其各自的异步触发,并开始在随机时间获取输入信号图片 (采集)。由于“图片获取”现在是随机的,而不是与输入信号同步,因此我们看到的只是屏幕中波形的“模糊”画面。此波形的“模糊”画面会提示我们,示波器不会在输入信号上触发。13 按触发电平旋钮,以将触发电平自动设置为约 50%。14 从 Demo1 端子断开通道 1 探头连接。从信号源断开通道 1 探头连接后,现在应看到基线 0.0 V 直流信号。因为有了此 0.0 V 直流信号,我们不再具有边沿交叉,因而示波器不会触发;示波器再次“自动触发”是为了向我们显示此直流电平信号。除了默认的自动触发模式外,示波器还具有另一种用户可选择的触发模式,称为正常触发模式。现在,让我们看一下正常触发模式与自动触发模式有何不同。15 将通道 1 探头重新连接到 Demo1 端子。您应该会再次看到触发的正弦波。16 按 [模式/耦合] 前面板键 (在触发电平旋钮右侧)。17 旋转 Entry 旋钮将触发模式选择从自动更改为正常。此时,您应该看不出显示波形中有任何差异。18 再次从 Demo1 端子断开通道 1 探头连接。现在,您应看到探头断开连接之前发生的最后一次采集 (最后一张图片)。我们看不到自动触发模式显示的 0.0 V 直流电平轨迹。如果选择正常触发模式,则当且仅当 示波器检测到有效的触发条件 (在这种情况下为边沿交叉)时示波器仅会显示波形。19 顺时针旋转触发旋钮,以便将触发电平设置在 +1.50 V(在我们的正弦波上方)。20 将通道 1 探头重新连接到 Demo1 端子。正弦波现在已连接且正在输入到示波器,但是此信号的重复显示在哪里?由于我们使用的是正常触发模式,因此示波器仍然需要有效的边沿交叉,但是由于触发电平设置在波形上方 (@ +1.50 V),因此不存在有效的边沿交叉。正如我们使用正常触发模式看到的一样,对于波形的位置我们没有任何线索,我们无法测量直流电源。21 按触发电平旋钮,以将触发电平自动设置为约 50%。示波器应该开始再次显示重复波形。一些较早使用的示波器将我们今天称为正常的触发模式叫作“触发的”触发模式,实际上可能是此触发模式的更具体的说明性术语,因此在此模式下,示波器仅在发现有效的触发条件时才触发,不会生成自动触发 (异步触发,以生成异步图片获取)。稍显矛盾的是,正常触发模式不是“通常”使用的触发模式,它不是示波器的默认触发模式。通常使用的触发模式为自动触发模式,是示波器的默认触发模式。此时,您可能会好奇要何时使用正常触发模式。当触发事件不是频繁发生时 (包括单冲事件),应使用正常触发模式。例如,如果您将示波器设置为显示非常窄的脉冲,但是如果此脉冲只以 1 Hz 的频率出现 (每秒出现一次),并且如果示波器的触发模式被设置为自动触发模式,则示波器会生成许多异步生成的自动触发,而不能显示罕见的窄脉冲。在这种情况下,您需要选择正常触发模式,这样示波器将等到获取有效的触发事件后,才显示波形。稍后,我们将在今后实验期间连接到这类信号。但是现在,让我们了解有关在噪声信号上触发的更多信息。示波器基本实验#3:触发噪声信号重复正弦波大概是示波器触发的信号中最简单的一种类型。但是,在真实世界中,信号不是如此简单。在本实验中,我们将了解学习如何在嘈杂的环境 (真实世界情况)中触发信号,还将学习如何使用波形平均化消除数字化波形中的噪声。1 确保您的两个示波器探头始终分别连接到标记为 Demo1 和 Demo2 的端子与通道 1 和通道 2 输入 BNC 之间。2 按下示波器前面板上的 [默认设置]。3 按 [帮助],然后按培训信号软键。4 如果使用 Entry 旋钮,此时应选择“带噪声的正弦”信号,然后按下输出软键将其打开。5 将通道 1 的 V/div 设为 500 mV/div。 6 将示波器的时基设置为 200.0 µs/div。即使示波器的默认设置条件将示波器配置为于 0.0 V 时在上升沿触发,示波器也会在此噪声正弦波的上升沿和下降沿触发,如图 15 所示。示波器实际上仅在上升沿触发。但是,当示波器在正弦波的下降沿触发时,实际上是在正弦波上随机噪声的上升沿触发。图15. 尝试在嘈杂的环境中触发信号7 通过将时基设置为 200.0 ns/div,验证示波器是否在噪声的上升沿触发。8 将示波器的时基设回到 200.0 µs/div。那么,我们如何在仅与正弦波 (无噪声)的上升沿重合的情况下使示波器触发?现在,让我们更多地了解一些示波器的用户可选择触发耦合选项。9 按 [模式/耦合] 前面板键 (触发电平旋钮旁边)。10 按高频抑制软键,以打开“高频抑制”滤波器。向示波器输入的信号实际上被拆分并沿着示波器内部的两条不同模拟路径向下发送。沿着其中一条路径向下的信号将被示波器的采集系统捕获 (图片获取系统)。类似的信号沿着一条单独的路径向下发送,由示波器的模拟触发电路处理。(请参考附录 A 中显示的示波器框图。)选择高频抑制后,由示波器的模拟触发电路处理的信号首先通过 50 kHz 低通滤波器。由于噪声由广泛连续的频率组成,包括高频率分量,因此触发电路随后会“看到”消除/衰减了大部分噪声的正弦波,而沿着采集路径向下发送的信号不受影响 (噪声被保留)。这样,我们就会看到噪声,如图 16 所示,但是示波器的触发电路看不到噪声。但是有一些限制。图16. 使用高频抑制触发噪声正弦波由于高频抑制滤波器基于固定的 50 kHz 低通硬件滤波器,因此不能在更高频率的信号上使用。这种 50 kHz 低通滤波器不影响我们的 1 kHz 正弦波培训信号。但是,如果我们尝试在 20 MHz 噪声正弦波上使用触发高频抑制,则 50 kHz 滤波器将“消灭”噪声和基本 20 MHz 正弦波,使其不可能触发任何信号。但是,我们还有两个选项。11 再次按高频抑制软键,将其关闭。示波器应再次在正弦波的上升沿和下降沿 触发。12 按噪声抑制软键,以打开“噪声抑制”滤波器。噪声抑制滤波器不是基于频率,而是基于幅度。尽管我们讨论了单触发电平,实际上信号必须交叉通过两个电平才能被鉴定为有效触发。这称为“触发滞后”,有时称为“触发灵敏度”。大多数示波器的默认触发灵敏度为 0.5 格。这意味着,输入信号必须摆动至少 0.5 格 (峰到峰)才能被鉴定为有效触发条件。但是,这也意味着,当噪声超过越 0.5 格 (峰到峰)时,示波器会触发噪声。选择噪声抑制时,示波器的滞后被扩展到约 1.0 格 (峰到峰)。对于这种特定的噪声正弦波,大多数时候,1.0 格的触发滞后可以解决我们遇到的问题。您可能会注意到示波器的显示屏上有一些“闪光”现象。这意味着,1.0 格的滞后相当不足。另一种解决方案是使用示波器的触发释抑功能,我们将在实验 #7 期间讨论。从带有噪声的此正弦波的测量离开之前,如果您想要查看此正弦波并对其执行测量,但却没有随机噪声,情况会怎样?13 按高频抑制软键。现在,高频抑制滤波以及噪声抑制滤波都应打开,为我们提供一种非常稳定的触发。14 按前面板波形区中的 [采集] 键 (就在光标旋钮下方)。15 旋转 Entry 旋钮将示波器的采集模式从正常更改为平均。选择平均采集模式时,示波器会对多个波形采集一起进行平均操作。如果信号中的噪声是随机的,则噪声分量会平均出来,因此我们随后可以仅对基本信号分量执行更准确的测量,如图 17 所示。图17. 使用示波器的平均采集模式消除噪声16 使用我们在实验 #1 中学到的测量技术确定以下各项:周期 = _____________频率 = _____________ Vp-p = _____________示波器基本实验 #4:记录和保存示波器测试结果完成各种电路实验作业后,您的教授可能需要您详细描写测试报告。可能需要包括实验报告中测量的图像 (图片)。此外,如果您不能在某个会话期间完成实验作业,则可能需要稍后继续测试。但是,如果您可以从中断的地方恢复,效果会好,您不必重新设置示波器,可能也不必重新采集波形。在本实验中,您将了解如何保存并调用各种示波器文件类型,包括图像、参考波形和设置。对于本实验,您必须有权访问个人 USB 存储设备。1 确保您的两个示波器探头始终分别连接到标记为 Demo1 和 Demo2 的端子与通道 1 和通道 2 输入 BNC 之间。2 按下示波器前面板上的 [默认设置]。3 按 [帮助],然后按培训信号软键。4 使用 Entry 旋钮选择“正弦”波形,然后按下输出软键将其打开。5 将通道 1 的 V/div 设为 500 mV/div。6 将示波器的时基设置为 100 ns/div。此时,您应该会看到正弦波的五个周期,如图 18 所示。现在,让我们保存此图像 (图片)、保存波形,并保存设置。图18. 我们要保存以便归档及随后分析的正弦波的五个周期7 将您的个人 USB 存储设备插入示波器的前面板 USB 端口。8 按前面板文件区中的 [保存/调用] 键 (在光标旋钮下方)。9 按保存软键,然后按格式软键。10 使用 Entry 旋钮选择 PNG 24 位图像 (*.png)。11 按保存到(或按下选择)软键,然后使用 Entry 旋钮指向 \usb。12 按文件名软键,然后旋转 Entry 旋钮并为此文件提供名称。现在,我们将其称为“test”。13 旋转通用 Entry 旋钮时,字母数字字符串将弹出。只需拨号到第一个字母(在本例中为“t”),然后按 Enter 软键,或按 Entry 旋钮。14 对此文件名中其余的每个字符重复步骤 #13。15 按删除软键,从默认文件名中删除其余所有字符。16 按增量软键,以关闭自动增量 (框应为黑色)。请注意,如果自动增量已启用,则示波器将自动增加与文件名关联的数字。如果您打算保存多个图像,则这可能非常有用,您无需在每个保存操作之间手动重新输入不同的文件名。17 按下按下以保存软键。您的 USB 存储设备现在应具有与图 18 类似的示波器显示屏的存储图像。文件名应为“test.png”。您可以打开此文件或随后将其插入 Microsoft-Word 文档,以查看它是否真的在那里。现在,让我们来保存示波器的设置条件。18 按下 [保存/调用] 前面板键。19 按保存软键,然后按格式软键。20 使用 Entry 旋钮选择设置 (*.scp)。21 按保存到(或按下选择或位置)软键。22 使用 Entry 旋钮指向 \usb,然后按 Entry 旋钮。23 按文件名软键。您会看到以前输入的文件名将变为新的默认文件名。由于“设置”文件格式使用其他文件扩展名,因此可以使用相同的文件名。24 按下按下以保存软键。USB 存储设备现在应该具有名为“test.scp”的文件,其中包含示波器的当前设置配置。我们将在以后调用此设置配置。请注意,您还可以将设置保存到示波器内部的某个闪存寄存器。但是,接下来可能使用此示波器的某个学生会用他/她的设置覆盖此存储寄存器。因此,作为学生,使用共享示波器借助自己的个人存储设备保存示波器设置和波形始终是很好的方法。现在,让我们保存参考波形数据文件。25 按下 [保存/调用] 前面板键。26 按保存软键,然后按格式软键。27 使用 Entry 旋钮选择参考波形数据文件 (*.h5)。28 按保存到(或按下选择)软键。29 使用 Entry 旋钮指向 \usb,然后按 Entry 旋钮。30 按文件名软键。重申一下,我们不需要定义新的名称,因为此文件格式还具有唯一的文件扩展名 (test.h5)。31 按下按下以保存软键。请注意,我们在前面保存 .png 文件类型后,这仅是示波器显示的像素映射。此类文件不能回调到示波器中,而且无法对此类文件中存储的数据执行测量。此类文件以及 .bmp 文件类型主要对归档目的 (如纳入实验报告中)非常有用。但是,我们刚刚存储的“参考波形”数据文件 (.h5) 会将电压与时间数据作为 X-Y 对来保存。此类文件可以回调到示波器中,以便以后进行文件。您还可以将此类文件回调到许多 PC 应用程序中,以便进行更广泛的脱机分析。既然我们已保存了示波器的设置配置,而且还保存了波形 (正弦波的四个周期),让我们看一下是否可以调用这些文件。不过,首先我们会从默认设置开始,目的是破坏您在屏幕上看到的当前设置和波形。32 按下 [默认设置]。33 按下 [保存/调用]。34 按下调用软键,然后按下一个调用软键。35 使用 Entry 旋钮选择设置作为要调用的文件类型。36 按位置(或按下选择或调用自)软键,然后使用 Entry 旋钮指向“test”。 37 按按下以调用软键,或者按 Entry 旋钮。我们应该刚将示波器的设置恢复到其以前的配置。但是,示波器不会保存培训信号的状态。因此,此时我们看到的唯一波形应为基线 (0.0 V) 信号,因为探头的输入中没有出现信号。现在,让我们调用以前保存的波形。38 按调用软键,然后使用 Entry 旋钮选择参考波形数据 (*.h5)。39 按调用自(或按下选择或位置)软键,然后使用 Entry 旋钮指向“test”。 40 按按下以调用软键,或者按 Entry 旋钮。现在,您应该使用以前的设置配置查看我们已存储的正弦波版本 (以及活动 0.0 V 基线信号),如图 19 所示。此时,您可以更改设置 (如果您愿意),还可以继续对此存储的波形执行测量。请注意,保存/调用数据后,您可以随时删除您的 USB 存储设备。图19. 调用示波器的设置配置和波形示波器基本实验 #5:补偿 10:1 无源探头既然您已完成了此示波器培训指南中的前四个实验,应该在一定程度上熟悉了如何使用示波器进行基本电压和定时测量,让我们回过头来再次讨论探测。在本指南的入门部分中,我们简要讨论了探测,并显示了 10:1 无源探头和示波器的输入组合的电子输入模型。探头和示波器的此电子模型在此处再次显示在图 20 中。图20. 连接到示波器的 1 MΩ 输入阻抗的 10:1 无源探头的简化示意图如果您记住了,就说明系统已指导您忽略此电子模型中的电容组件,只考虑阻性组件。当前我们只观察阻性组件时,我们已确定探头的 9 MΩ 探头端部电阻以及示波器的 1 MΩ 输入阻抗建立了 10:1 分压器比率。对于低频或直流电应用,忽略电容元件是比较适宜的。但是,如果您需要测量动态信号 (示波器的主要测量应用),则不能忽略此电子模型的电容元件。所有示波器探头和示波器输入中本身都固有寄生电容。这些包括探头电缆电容 (C 电缆),以及示波器的输入电容 (C 示波器)。“固有/寄生”仅意味着电子模型的这些元件非有意设计,而是真实电子世界中原本就存在的。固有/寄生电容的数量随着示波器的不同和探头的不同而异。但是,如果没有其他的设计电容组件来补偿系统中固有的电容元件,则系统在动态信号条件 (非直流)下的阻抗会从探测系统的整体动态衰减改为不同于所需的 10:1 比率。沿着可调补偿电容 (C 组件)分布其他/设计的探针电容器 (C 探针)的目的是建立与 10:1 的阻性衰减匹配的电容阻抗衰减。正确调整补偿电容时,这还可以确保与 9 MΩ 电阻器并列的探针电容的时间常数,和与示波器的 1 MΩ 输入电阻器并列的固有和补偿电容的时间常数匹配。我们不会花很多时间讨论这一原理,只是连接到某个信号,并了解欠补偿、补偿过度和适当补偿的影响。但是,首先应注意我们会将通道 1 探头连接到前一个实验中的其他端子。1 将两个 示波器探头连接到标记了探头补偿的端子。请注意,这与称为 Demo2 的端子也是同一个端子。2 按下示波器前面板上的 [默认设置]。3 将通道 1 设置为 1.0 V/div。4 将通道 1 偏移/位置设置为 0.0 V(默认设置)。5 按触发电平旋钮,以将通道 1 上的触发电平设置为约 50%。6 按 [2] 前面板键以打开通道 2。7 将通道 2 设置为 1.0 V/div。8 将通道 2 偏移/位置设置为约 +3.5 V。9 将示波器的时基设置为 200.0 µs/div。如果正确补偿了探头,则应在示波器显示屏上看到两个带有平坦响应的 1 kHz 方波,与图 21 类似。现在,让我们调整每个探头上的探头补偿。图21. 使用示波器的 1 kHz 探头补偿信号补偿 10:1 无源探头10 使用小的“一字”螺丝刀,调整位于每个探头主体上的可变电容器。请注意,此调整有时位于一些探头的 BNC 连接端附近。图 22 显示了通道 1 探头(黄色波形)补偿过度的示例,以及通道 2 探头(绿色波形)欠补偿的示例。如果您没有观察到近乎完美的方波,则应重新调整探头上的探头补偿,直到示波器上的波形与图 21 类似。图22. 不当补偿的探头正确调整探头后,只要在此示波器上继续使用这些探头,在下次使用示波器时应该就不需要重新调整它们了。此时,您已完成了本实验的实践部分。如果您赶时间,并需要完成本章中最后一个实验,则应跳到实验 #6,然后读取本实验后面其余部分的内容。计算电容补偿的正确数量如果您面临挑战,请使用以下假设条件计算正确补偿所需的补偿电容 (C comp) 数量:对于计算所需的补偿电容 (C comp) 数量,最早的方法是使 R tip 和 C tip 并联的时间常数 (1/RC) 与 R scope 和 C parallel 并联的时间常数相等。请记住,C parallel 是探头/示波器模型中的三个电容元件的组合。另一种计算方法是使 C parallel 的电容阻抗的 9 倍与 C tip 电容阻抗的 1 倍相等。这将建立电容阻抗产生的衰减常数,与仅阻性网络 (10:1) 产生的衰减常数相同:探头负载除了适当补偿 10:1 无源探头以获得最为准确的示波器测量外,另一个必须要考虑的问题就是探头负载。换句话说,将探头和示波器连接到被测件 (DUT) 是否会改变电路的行为?将任何仪器连接到电路中后,仪器本身 (包括探头)都会成为 DUT 的一部分,并在某种程度上成为信号“负载”或改变信号的行为。如果使用上面列出的电阻和电容的给定值(以及已计算的 C comp 值),我们可以按照单个电阻器和电容器的并联方式将探头和示波器的负载影响通过建模方式合并在一起,如图 23 所示。图23. 10:1 无源探头和示波器负载模型对于低频或直流电应用,负载由 10 MΩ 电阻控制,在大多数情况下,这不应成为问题。但是,如果您探测的是 100 MHz 数字时钟信号,会怎么样?此数字时钟的第 5 个谐波 (用于创建此信号形状的重要分量)将为 500 MHz。现在,应计算由此负载模型的 13.5 pF 电容提供的阻抗,如图 23 所示:尽管 13.5 pF 看起来可能不多,但是频率越高,此负载电容数量就会很大。对于此类较高频的应用,大多数示波器供应商提供了可选的有源探头解决方案,它们具有更低的输入电容 (辅助 pF)。但是,这些类型的特殊探头成本比典型的 10:1 无源探头要高很多。最后,请注意本实验中显示的探头 + 示波器模型非常简单。较准确的模型还包括电感元件。电线 (特别是接地引线)应被视为电感元件,特别是对高频应用而言。示波器基本实验 #6:使用内置函数发生器生成波形除了示波器以外,您还将在各种电子工程和/或物理电路实验中使用大量测试设备,包括电源、数字万用表和函数发生器。函数发生器可以产生大量不同类型/形状的信号,这些将用作电路设计和实验的动态输入。Keysight 的 InfiniiVision 2000 和 3000 X 系列示波器具有内置的可选函数发生器,称为 WaveGen。若要完成这个简短的实验,前提条件是示波器上已正确安装此选件许可证。如果您不知道函数发生器功能是否已被许可并启用,请按 [Wave Gen] 前面板键。如果启用此选件,则波形发生器的菜单将出现。如果没有启用此选件,则您会看到屏幕上出现一条消息,指示此选件尚未得到许可。假设您的示波器具有 WaveGen 选件,让我们开始这一简短的实验,了解如何使用通用函数发生器。1 从示波器断开所有探头的连接。2 将 50 Ω BNC 同轴电缆连接到发生器的输出(电源开关旁边)与通道 1 输入BNC 之间。3 按下 [默认设置]。4 如果您使用的是 Keysight 2000 X 系列示波器,则需要将通道 1 的探头衰减常数设置为 1:1。按 [1] 前面板键,然后按探头软键。按新的探头软键,然后旋转 Entry 旋钮将衰减常数设置为 1.00:1。5 按 [WaveGen] 前面板键 (在通道 1 V/div 旋钮正上方)。6 按设置软键,然后按默认波形发生器软键。请注意,示波器的 [默认设置] 不会更改 WaveGen 的设置。因此,要确保从同一个起点开始,我们还需要发生器的默认设置。7 再次按 [WaveGen] 前面板键。8 将通道 1 的 V/div 设置设为 100 mV/div。9 将示波器的时基设置为 100.0 µs/div(默认设置)。您现在应该看到示波器上的正弦波的一个周期,与图 24 类似。峰峰值振幅为 500 mV 的 1.000 kHz 正弦波是 WaveGen 的默认信号。现在,让我们对信号进行一些更改。图24. 使用示波器的内置 WaveGen 函数发生器10 按频率软键,然后旋转 Entry 旋钮增加或减少频率。请注意,最大频率设置为 20.00 MHz。11 按振幅软键,然后旋转 Entry 旋钮以更改此信号的振幅。12 按偏移软键,然后旋转 Entry 旋钮以更改此信号的偏移。13 按波形软键,然后旋转 Entry 旋钮选择各种波形。请注意,选择方波后,您还可以微调占空比。选择脉冲后,您可以微调脉冲宽度。从此时开始,您可能不会将发生器的输出直接连接到示波器中了。您可能会将发生器的输出连接到电路的输入。随后,您将使用带有探头的示波器监视电路的输入和输出。就到这儿吧!了解使用示波器示波器进行实验测量的更多信息:编辑于 2022-08-04 09:28仪器仪表示波器示波器校准仪​赞同 401​​9 条评论​分享​喜欢​收藏​申请

示波器的使用方法 - 初次使用示波器的详细步骤 - 知乎

示波器的使用方法 - 初次使用示波器的详细步骤 - 知乎首发于示波器使用方法切换模式写文章登录/注册示波器的使用方法 - 初次使用示波器的详细步骤是德科技 Keysight Technologies​已认证账号本指南说明如何使用 Keysight 1000B 系列示波器 - 初次使用示波器的详细步骤。步骤 1. 检查包装物品步骤 2. 打开示波器电源步骤 3. 加载默认示波器设置步骤 4. 输入波形步骤 5. 使用自动设置步骤 6. 补偿探头步骤 7. 熟悉前面板控件步骤 8. 熟悉示波器显示屏步骤 9. 使用运行控制键步骤 10. 访问内置帮助固定示波器步骤 1. 检查包装物品1 检查货运包装箱是否损坏。请在检查完物品的完整性以及示波器的机械和电气性能之前,保留损坏的货运包装箱或衬垫材料。2 验证在示波器包装中是否有下列物品:• 示波器。• 电源线。• N2841A 10:1 10 MΩ 无源探头,数量= 2。• 文档 CD。• 前面板标贴(如果选择了非英语的语言选项)。3 检查示波器。步骤 2. 打开示波器电源下面几个步骤(打开示波器电源、加载默认设置和输入波形)将提供快速功能检查,以验证示波器是否能够正常工作。1 . 将电源线连接到电源。只能使用为示波器设计的电源线。使用提供所需电量的电源。表 2 电源要求警告 - 为避免遭受电击,请确保示波器正确接地。表 3 环境特征2. 打开示波器的电源。图 1 电源开关步骤 3. 加载默认示波器设置您可以随时加载出厂默认设置,以便将示波器恢复到原始设置。 1 按下前面板的默认设置 [Default Setup] 键。2 在显示 “ 默认 ” 菜单时,按下菜单开/关 [Menu On/Off] 可关闭菜单。(可使用 “ 默认 ” 菜单中的撤消软键取消默认设置并返回到上一设置。步骤 4. 输入波形1. 将波形输入到示波器的通道。使用提供的一个无源探头从示波器的前面板输入探头补偿信号。为了避免损坏示波器,请确保 BNC 连接器上的输入电压不超过最大电压(最大值为 300 Vrms)。当测量 30V以上的电压时,请使用 10:1探头。步骤 5. 使用自动设置示波器有自动设置功能,可针对存在的输入波形自动设置示波器控件。自动设置要求波形的频率大于或等于 50 Hz,占空比大于 1%。1 按下前面板的自动设置 [Auto Scale] 键。2 在显示 “ 自动 ” 菜单时,按下菜单开/关 [Menu On/Off] 可关闭菜单。示波器将打开应用了波形的所有通道,并相应地设置垂直和水平刻度。它还根据触发源选择时基范围。所选的触发源是应用了波形的编号最高的通道。(可使用 “ 自动 ” 菜单中的撤消软键取消自动设置并返回到上一设置。)示波器已配置为下列默认控制设置:表 4 自动设置默认设置步骤 6. 补偿探头补偿探头以使探头与输入通道匹配。只要是第一次将探头连接到输入通道,都应补偿探头。低频补偿对于提供的无源探头:1 将 “ 探头 ” 菜单衰减设置为 10X。如果使用探头钩尖,请将钩尖牢固地插入探头,确保连接正确。2 将探头针尖连接到探头补偿连接器,并将接地导线连接到探头补偿器接地连接器。3 按下自动设置 [Auto Scale] 前面板键。4 如果波形不像图4 中显示的正确补偿的波形那样,则使用非金属工具调节探头上的低频补偿调整以获得尽可能平坦的方波。低频补偿调整图 4 低频探头补偿步骤 7. 熟悉示波器前面板控件在使用示波器之前,应熟悉前面板控件。前面板有旋钮、键和软键。最常使用旋钮来进行调整。使用键可以运行控件并通过菜单和软键更改其他示波器设置。图5 示波器前面板示波器前面板旋钮、键和软键的定义如下:表 5 前面板控件不同语言的前面板标贴如果选择了除英语外的语言选项,则可获得所选语言的前面板标贴。安装前面板标贴:1 将标贴左侧的卡舌插入前面板上适当的插槽中。2 轻轻将标贴按在旋钮和按钮上。3 当标贴与前面板对准时,将标贴右侧的卡舌插入前面板上的插槽中。 4 将标贴展平。它应固定在前面板上。步骤 8. 熟悉示波器显示屏图 6 示波器显示屏使用示波器软键菜单图 7 软键菜单当某个示波器前面板键打开一个菜单时,可使用五个软键从菜单中选择项目。一些常用的菜单选项如下:菜单开/关 [Menu On/Off] 前面板键可关闭菜单或再次打开上次访问的菜单。使用“显示”菜单中的菜单保持项可选择菜单的显示时间 。步骤 9. 使用运行控制键有两个用于启动和停止示波器采集系统的前面板键:运行/停止 [Run/Stop] 和单次 [Single]。• 当运行/停止 [Run/Stop] 键为绿色时,表示示波器正在采集数据。要停止采集数据,可按下运行/停止 [Run/Stop]。停止后,将显示最后采集的波形。• 当运行/停止 [Run/Stop] 键为红色时,表示数据采集已停止。要开始采集数据,可按下运行/停止 [Run/Stop]。• 要捕获并显示单次采集 (不论示波器是在运行还是已停止),可按下单次[Single]。在捕获并显示了单次采集后,运行/停止 [Run/Stop] 键为红色。步骤 10. 访问内置帮助示波器具有内置快速帮助信息。访问内置帮助:1 按住要获得其快速帮助信息的前面板键、软键和可按下的旋钮。内置帮助以 11 种不同语言提供固定示波器要使 1000B 系列示波器固定到位,可使用防盗锁孔或保险环。图 9 固定仪器(以上信息仅供参考。如有更改,恕不另行通知。)我们将在下一期介绍如何使用示波器水平和垂直控件、通道设置、数学波形、参考波形和显示设置。更多示波器产品信息和相关示波器的使用方法, 您可点击:是德科技编辑于 2024-02-04 16:50・IP 属地马来西亚示波器示波器校准仪测量仪器​赞同 43​​1 条评论​分享​喜欢​收藏​申请转载​文章被以下专栏收录示波器使用方法介绍是德科技(原安捷伦)示波器的使用方法

示波器按键和旋钮介绍_哔哩哔哩_bilibili

示波器按键和旋钮介绍_哔哩哔哩_bilibili 首页番剧直播游戏中心会员购漫画赛事投稿史上最最最详细示波器入门教学(持续更新)建议收藏

16.1万

193

2023-05-04 12:05:14

未经作者授权,禁止转载394717329689904本期视频是史上最最最详细的示波器教学视频,针对电子小白,手把手基础教学,干货满满,节奏适中适合收藏。

示波器是一种用途十分广泛的电子测量仪器,它能把肉眼看不见的电信号变换成看得见的图像便于人们研究各种电现象的变化过程。由于示波器涉及的操作比较多,本期视频可能时间比较长,但是看完之后绝对收获满满,建议收藏学习科技猎手2023科技科工机械入门电子专业示波器使用方法示波器的调节示波器怎么看示波器示波器的使用大学物理实验示波器实验

安泰小课堂

发消息

专注电子测量仪器15年 售前选型/仪器销售/培训服务/系列课程 vx18149201231感谢三连~私信

关注 3.4万

桌面AI伙伴,陪你High翻天!视频选集(2/6)自动连播示波器实验(物理老师制作,示波器原理讲解非常详细,非常适合初学者理解示波器原理与操作时使用)物理老师李传国

55.8万

1091

示波器基本使用方法Tom-Mum工作室

12.8万

47

如何使用示波器-示波器教程MeCable

23.5万

321

频谱分析仪基础操作-入门篇 十五年测试工程师经验总结兴萨爱测试

8.7万

74

示波器那么重要,你确定不进来看看?工科男孙老师

40.7万

619

【能有多快?尝试用200瓦半导体给可乐制冷!】大宽物理

238.8万

2432

三分钟快速上手示波器操作,初学者必看!张飞实战电子

2.2万

8

【大学生如何学习使用示波器】搞电赛的大学生只需要掌握示波器这几个技巧方法就能很好的做项目,通俗易懂,当然也适合刚毕业大学生,共六集旋翼僵尸

7.2万

90

泰克3014示波器触发设置(单次触发,正常模式,自动模式是取消触发)kenyi2007

5380

2

示波器使用基础2——初学者学习示波器的“绊脚石”:触发何乐生0

3.2万

7

示波器使用方法介绍水清濯吾缨

2307

2

示波器的来龙去脉——示波器使用如此简单硬禾学堂

15.6万

304

新手如何选择示波器?适合自己的才是最好的!菲尼瑞斯

5868

1

【网络课程】复旦大学_示波器的原理及使用乐色侯先生

6.5万

302

新手如何选择示波器?这三个参数很重要!菲尼瑞斯

3920

0

【模电实验】示波器的基本操作Piercejiang88

927

1

[普物实验]示波器的使用 实验讲解(兰州大学)yjn1187

4843

4

正点原子DS100示波器试用和吐槽神秘的猫大侠

4.3万

76

示波器,一段时间不用就会忘记怎么操作~上电后先试下自带的方波信号,两个通道都调下。早睡早起开心造梦

1541

1

示波器使用维修电工技师

834

0

展开

小窗

客服

顶部

赛事库 课堂 2021

示波器基础知识 PDF Asset Page | Keysight

示波器基础知识 PDF Asset Page | Keysight

Choose a country or area to see content specific to your location

启用浏览器 cookies,以便改善站点的功能和性能。

Enable Javascript and browser cookies for improved site capabilities and performance.

Toggle Menu

在线咨询

联系是德科技

欢迎

我的个人信息

退出

登录

注册

确认您的国家或地区

中国

中国

日本

繁體中文

한국

Brasil

Canada

Deutschland

France

India

Malaysia

United Kingdom

United States

Australia

Austria

Belgium

Denmark

Finland

Hong Kong, China

Ireland

Israel

Italy

Mexico

Netherlands

Singapore

Spain

Sweden

Switzerland (German)

Thailand

Vietnam

更多…

请确认

确认您所在的国家/地区,以便获取相应的价格、促销、活动和联系信息等。

Select locale

确认

产品与服务

示波器

InfiniiVision数字式存储示波器

实时示波器――合规性测试

等效时间采样示波器

便携式示波器-手持、模块化和USB示波器

示波器软件

示波器探头

全部示波器  

分析仪

频谱分析仪(信号分析仪)

网络分析仪

逻辑分析仪

协议分析仪和训练器

误码率测试仪

噪声系数分析仪和噪声源

高速数字化仪和多通道数据采集解决方案

交流电源分析仪

直流电源分析仪

材料测试设备

器件电流波形分析仪

参数/器件分析仪和曲线追踪器

仪表

数字万用表DMM

相位噪声测量

功率计 + 功率传感器

53200 系列射频和通用频率计数器/计时器

LCR 表和阻抗测量产品

飞安计、皮安计和静电计

发生器,源和电源

信号发生器(信号源)

波形和函数发生器

任意波形发生器

脉冲发生器产品

HEV / EV / 电网仿真器和测试系统

直流电源

源表模块

直流电子负载

交流电源

软件

EDA 软件

仪器测量软件

仪器工作流程软件

软件测试

所有设计及测试软件  

无线

信道仿真解决方案

物联网合规性测试解决方案

无线路测

无线接入和核心网测试

无线分析仪

无线信道仿真仪

5G NR 基站测试

空中接口测试

模块化仪器

PXI 产品

AXIe 产品

数据采集系统DAQ

USB 产品

VXI 产品

参考解决方案

所有模块化产品  

网络测试与安全

应用和威胁情报

云测试

网络培训仿真器

网络测试硬件

综合流量发生器

协议和负载测试

网络安全测试工具

网络建模

全部网络安全和测试  

网络可视性

旁路交换机

时钟同步

云可视性

Network and Application Monitoring

网络流量汇聚设备(NPB)

网络分流器-是德科技 Keysight

所有网络可视化产品  

服务

KeysightCare

校准服务

维修服务

技术更新服务

测试即服务(TaaS)

网络/安全服务

咨询服务

Financial Services

Education Services

Keysight Support Portal

Used Equipment

所有服务  

其他产品

在线ICT测试系统-ICT测试仪器

面向特定应用的测试系统和组件

参数测试解决方案

光通信测试与测量产品

激光干涉仪和校准系统

单片激光合路器与精密光学产品

毫米波和微波器件

所有产品、软件和服务

 

了解

资源

使用场景

行业

活动

博客

产品专区

行业

Inside Keysight

关于 Keysight

购买

支持

是德科技产品支持

软件下载中心

欢迎

|

Exit Procurement Session

View and Transfer Cart

Discard Cart and End Procurement Session

查看

下载

示波器基础知识

应用指南

Introduction

Electronic technology permeates our lives. Millions of people use electronic devices such as cell phones, televisions, and computers on a daily basis. As electronic technology has advanced, the speeds at which these devices operate have accelerated. Today, most devices use high-speed digital technologies. 

Engineers need the ability to accurately design and test the components in their high-speed digital devices. The instrumentation engineers use to design and test their components must be particularly well-suited to deal with high speeds and high frequencies. An oscilloscope is an example of just such an instrument. 

Oscilloscopes are powerful tools that are useful for designing and testing electronic devices. They are vital in determining which components of a system are behaving correctly and which are malfunctioning. They can also help you determine whether or not a newly designed component behaves the way you intended. Oscilloscopes are far more powerful than multimeters because they allow you to see what the electronic signals actually look like. 

Oscilloscopes are used in a wide range of fields, from the automotive industry to university research laboratories, to the aerospace-defense industry. Companies rely on oscilloscopes to help them uncover defects and produce fully-functional products. 

Electronic Signals 

The main purpose of an oscilloscope is to display electronic signals. By viewing signals displayed on an oscilloscope, you can determine whether a component of an electronic system is behaving properly. So, to understand how an oscilloscope operates, it is important to understand the basic signal theory. 

Wave properties 

Electronic signals are waves or pulses. Basic properties of waves include the following. 

Amplitude 

Two main definitions for amplitude are commonly used in engineering applications. The first is often referred to as the peak amplitude and is defined as the magnitude of the maximum displacement of a disturbance. The second is called the root-mean-square (RMS) amplitude. To calculate the RMS voltage of a waveform, square the waveform, find its average voltage and take the square root. 

For a sine wave, the RMS amplitude is equal to 0.707 times the peak amplitude. 

Phase shift

Phase shift refers to the amount of horizontal translation between two otherwise identical waves. It is measured in degrees or radians. For a sine wave, one cycle is represented by 360 degrees. Therefore, if two sine waves differ by half of a cycle, their relative phase shift is 180 degrees. 

Period 

The period of a wave is simply the amount of time it takes for a wave to repeat itself. It is measured in units of seconds. 

Frequency 

Every periodic wave has a frequency. The frequency is simply the number of times a wave repeats itself within one second (if you are working in units of Hertz). The frequency is also the reciprocal of the period. 

Waveforms 

A waveform is the shape or representation of a wave. Waveforms can provide you with a great deal of information about your signal. For example, it can tell you if the voltage changes suddenly, varies linearly, or remains constant. There are many standard waveforms, but this section will cover the ones you will encounter most frequently. 

Sine waves 

Sine waves are typically associated with alternating current (AC) sources such as an electrical outlet in your house. A sine wave does not always have a constant peak amplitude. If the peak amplitude continually decreases as time progresses, we call the waveform a damped sine wave. 

Square/rectangular waves 

A square waveform periodically jumps between two different values such that the lengths of the high and low segments are equivalent. A rectangular waveform differs in that the lengths of the high and low segments are not equal. 

Triangular/sawtooth waves 

In a triangular wave, the voltage varies linearly with time. The edges are called ramps because the waveform is either ramping up or ramping down to certain voltages. A sawtooth wave looks similar in that either the front or back edge has a linear voltage response with time. However, the opposite edge has an almost immediate drop.

×

解锁内容

免费注册

*Indicates required field

更改电子邮件地址?

电子邮箱*必填项

名字*必填项

姓* 必填项

国家或地区*必填项

--请选择--

United States

United Kingdom

Canada

India

Malaysia

Netherlands

Australia

South Africa

France

Germany

Singapore

Sweden

Brazil

Afghanistan

Åland Islands

Albania

Algeria

American Samoa

Andorra

Angola

Anguilla

Antarctica

Antigua and Barbuda

Argentina

Armenia

Aruba

Austria

Azerbaijan

Bahamas

Bahrain

Bangladesh

Barbados

Belarus

Belgium

Belize

Benin

Bermuda

Bhutan

Bolivia

Bosnia and Herzegovina

Botswana

Bouvet Island

Brit/Indian Ocean Terr.

Brunei Darussalam

Bulgaria

Burkina Faso

Burundi

Cambodia

Cameroon

Canary Islands

Cape Verde

Cayman Islands

Central African Republic

Chad

Chile

China

Christmas Island

Cocos (Keeling) Islands

Colombia

Comoros

Congo

Congo, The Dem. Republic Of

Cook Islands

Costa Rica

Côte d'Ivoire

Croatia

Cyprus

Czech Republic

Denmark

Djibouti

Dominica

Dominican Republic

Ecuador

Egypt

El Salvador

Equatorial Guinea

Eritrea

Estonia

Ethiopia

Falkland Islands

Faroe Islands

Fiji

Finland

French Guiana

French Polynesia

French Southern Terr.

Gabon

Gambia

Georgia

Ghana

Gibraltar

Greece

Greenland

Grenada

Guadeloupe

Guam

Guatemala

Guinea

Guinea-Bissau

Guyana

Haiti

Heard/McDonald Isls.

Honduras

Hong Kong, China

Hungary

Iceland

Indonesia

Iraq

Ireland

Israel

Italy

Jamaica

Japan

Jordan

Kazakhstan

Kenya

Kiribati

Korea (South)

Kuwait

Kyrgyzstan

Laos

Latvia

Lebanon

Lesotho

Liberia

Libya

Liechtenstein

Lithuania

Luxembourg

Macau

Macedonia

Madagascar

Malawi

Maldives

Mali

Malta

Marshall Islands

Martinique

Mauritania

Mauritius

Mayotte

Mexico

Micronesia

Moldova

Monaco

Mongolia

Montserrat

Morocco

Mozambique

Myanmar

N. Mariana Isls.

Namibia

Nauru

Nepal

Netherlands Antilles

New Caledonia

New Zealand

Nicaragua

Niger

Nigeria

Niue

Norfolk Island

Norway

Oman

Pakistan

Palau

Palestinian Territory, Occupied

Panama

Papua New Guinea

Paraguay

Peru

Philippines

Pitcairn

Poland

Portugal

Puerto Rico

Qatar

Reunion

Romania

Russian Federation

Rwanda

Saint Kitts and Nevis

Saint Lucia

Samoa

San Marino

Sao Tome/Principe

Saudi Arabia

Senegal

Serbia and Montenegro

Serbia

Montenegro

Seychelles

Sierra Leone

Slovak Republic

Slovenia

Solomon Islands

Somalia

Spain

Sri Lanka

St. Helena

St. Pierre and Miquelon

St. Vincent and Grenadines

Suriname

Svalbard/Jan Mayen Isls.

Swaziland

Switzerland

Taiwan, China

Tajikistan

Tanzania

Thailand

Timor-Leste

Togo

Tokelau

Tonga

Trinidad and Tobago

Tunisia

Turkey

Turkmenistan

Turks/Caicos Isls.

Tuvalu

Uganda

Ukraine

United Arab Emirates

US Minor Outlying Is.

Uruguay

Uzbekistan

Vanuatu

Vatican City

Venezuela

Viet Nam

Virgin Islands (British)

Virgin Islands (U.S.)

Wallis/Futuna Isls.

Western Sahara

Yemen

Zambia

Zimbabwe

公司*必填项

行业*必填项

--请选择--

航空航天/国防电子

汽车

消费类电子

数据中心/云服务提供商

教育

电子产品生产商

能源/基础设施

金融

政府部门

物联网电子产品

医疗/保健

网络设备制造商

量子技术

零售/医疗

半导体

 软件开发

运营商

测试实验室

交通运输

工作经验*必填项

--请选择--

< 2 年

2 - 7 years

> 7 years

工作类别*必填项

--请选择--

行政管理

总工程师/部门主管

技术经理

职员

学员

咨询顾问

工作职务内容*必填项

--请选择--

版图设计

数字:高速接口

数字:光通信

IT/信息技术

L2-7 网络设计/运营

电源:低功耗分析

电源:转换和调理

产品:硬件测试

产品:多系统集成

产品:软件测试

质量保证

射频:模拟/混合信号

射频:外场测试

半导体测试

Software: Development

软件集成

其他:非技术人员

岗位职称*必填项

--请选择--

学术研究

应用程序管理

电路和版图设计

数字产品设计师

电子产品生产质检

销售工程师

终端系统测试

人力资源/财务/法务

实验室管理

市场/销售

网络/安全架构师

网络/安全运营

电源设计师

Procurement

Product Management

射频设计师

软件工程师

学员

测试工程师/技术员

其他:非技术人员

是的,我希望继续收到定制化的关于新产品,资源及活动等信息的更新邮件。

是否需要与业务专员共同讨论您的解决方案需求?

暂时不需要

您希望以何种方式进行联系? *必填项

电子邮箱

您希望以何种方式进行联系?

电话*必填项

请让销售代表与我联系。

请通过单击按钮,提供给是德科技您的个人数据。请在Keysight隐私声明 中,参阅有关我们如何使用此数据的信息,謝謝。

感谢您!

您的表格已成功提交

Note: Clearing your browser cache will reset your access. To regain access to the content, simply sign up again.

联系销售人员

×

请销售人员联系我。

*Indicates required field

您希望以何种方式进行联系? *必填项

Preferred method of communication?

更改电子邮件地址?

电子邮箱

Preferred method of communication?

电话*必填项请输入有效的电话号码,不含空格或特殊字符

是的,我希望继续收到定制化的关于新产品,资源及活动等信息的更新邮件。

请通过单击按钮,提供给是德科技您的个人数据。请在Keysight隐私声明 中,参阅有关我们如何使用此数据的信息,謝謝。

感谢您!

A sales representative will contact you soon.

查看

产品与服务

解决方案

行业

活动

是德科技云课堂

翻新设备

Insights

成功案例

资源

博客

社区

合作伙伴

支持

是德科技产品支持

管理软件许可证

产品订单状态

部件

关于 Keysight

新闻

投资者关系

品质与安全

企业社会责任

多元化、公平性和包容性

供应链透明化

招贤纳士

© 是德科技 2000–2024

隐私

网站地图

条款

商标致谢

反馈

京ICP备20005161号

京公网安备 11010502040140 号

您希望搜索哪方面的内容?

搜索

MXG Signal Generator

ENA-X Network Analyzer

UXM for Wi-Fi 7

Artificial Intelligence

寻找解决方案

需要技术支持

参加课程

查找活动

原厂翻新仪器

KeysightCare

在线购买

建议的搜索

No product matches found - System Exception

符合的结果

查看所有搜索结果

示波器面板按键说明_示波器各个按键功能图-CSDN博客

>

示波器面板按键说明_示波器各个按键功能图-CSDN博客

示波器面板按键说明

最新推荐文章于 2023-06-11 21:13:34 发布

Coisini_ye

最新推荐文章于 2023-06-11 21:13:34 发布

阅读量2.9w

收藏

107

点赞数

12

文章标签:

硬件

测试类型

原文链接:https://blog.csdn.net/huangling07031190/article/details/107099081

版权

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

前言

一、面板按键

二、Cursors 光标

三、Trigger/Menu 触发菜单/按此按钮可指定触发设置

四、Acquired按键

六、Measure键

五、其他按键

总结

前言

函数发生器是用直接数字合成方式(DDS)产生正弦波、方波、三角波、脉冲波及调幅(AM)、调频(FM)、调相(PM)、频移键控(FSK)、群脉冲(BURST)、扫频(SWEEP)等多种时间函数波形的仪器,广泛应用于无线电射频参数的测量。

一、面板按键

1、 Run/Stop 停止/运行按钮 2、 Single 单次触发按钮/按下此按键变绿后可抓触发一次 3、 Autoset 自动设置按键 /要快速显示波形时,请执行此按钮,示波器会自动设置垂直、水平和触发控制快速显示 4、 Intensity 波形亮度/按下可用通用旋钮a和b控制波形的显示亮度和刻度亮度 5、 Cursors 光标显示按钮/长按此按钮可在屏幕上显示出X/Y轴光标,再按一次则可关闭  

二、Cursors 光标

进入光标显示界机后可选项需要设置的:

① 光标 波形—只能测量选中的波形,屏幕—屏幕中显示的波形都能测量

② 源 选项要测量波形的通道,进去后通过通用旋钮a旋动来选中

③单位 选择测试光标测量时需要显示的单位,如:秒、Hz、比率(%)、相位。通过通用旋钮a来选垂直条单元,通过通用旋钮b来选水平条单元。

三、Trigger/Menu 触发菜单/按此按钮可指定触发设置

① 触发“类型”设置项,有边沿、序列、脉冲、超时、欠幅脉冲、逻辑等项,可以根据需要选择对应的

② 触发“源”设置项,可选择那个通道作为触发源

③ 触发的“耦合”方式设置,进入后可通过对应的右边按键进行选择

④ 触发的“斜率”方式选择即选择需要触发的波形是:上升沿、下降沿、上下沿任何一个都成立

⑤ 触发的”电平“先择按钮,通过此按键可设置触发的电平与功能

四、Acquired按键

Acquired 采集 进入此按钮可以更改采集模式、记录长度和延迟时间等

① 模式 可设置选择采集的模式,有取样、峰值检测、高分辨率、包络、平均

② 记录长度 采集时使用的频率,越大越接尽真实波形,一般要大于需要测试波形的频率5倍左右

③ 延迟 如果希望相对于触发事件延迟采集,请按下”“延迟”按钮选择“开”就可以

六、Measure键

Measure 测量 对波形执行自动测量或配置光标

① 添加测量,A、通过调节通用旋钮a可以选择需要测量的通道并往下按后右边的源会出现选中的通道数字,通过调节通用旋钮b可以选择需测量的项目并往下按,选中后会在右边的测量类型中出现选中的测试项,如:频率、周期、上升沿、下降沿等测试项

② 删除测量 则是删除已添加的测量项目

五、其他按键

 Trigger/Level功能一样Trigger/Level 触发电平旋钮/转动此旋钮可调节触发的电平,按下按钮可以蒋触发电平设置为波形的中点Horizontal/Position 调整水平位置按钮,调节水平位置确定预触发取样和触发后取样的数量,按下回到中点Scale 调整水平刻度,转动此旋钮可调节水平刻度即在显示屏上每一间隔的时间大小TEST用来分析功率应用测试用的Search 搜索功能,按此按键在捕获数据中搜索用户定义的事件/标准,按此按键后在屏幕的侧面会出现菜单选择“开”,按搜索类型使用通用旋钮a\b来操作搜索需要设置的条件,很少用到。Multipurpose a 通用旋钮aSelect 选择 按此按钮可激活特殊功能,一般是用来打开光标后垂直与水平光标的切换Fine 精细 按此按钮可以在粗调与细调之间切换,如光标的移动等Multipurpose b 通用旋钮b缩放 播放/暂停 按钮 按此按钮可以开始与停止波形的自动平移。使用平移旋钮控制速度与方向 Pan-Zoom 平移/缩放 旋钮。大圈的为外环旋钮为平移的,可以在采集的波形上滚动缩放窗口。中间小圈的为内环旋钮,可以控制缩放大小,顺时针为放大,逆时针为缩小。 ←上一标记,可跳到上一波形标记位 Set/Clear 设置/清除 标记 可以建立或删除波形标记状态→下一标记,可跳到下一波形标记位 Math 数字波形 创建数学波形,可以支持对通道和基准波形的分析。通过将源波形和其它数据合并然后转换为数学波形,可以产生应用程序需要的数据视图。例如:可以对两波形的加、减、乘、除数学运算等。 1通道Position垂直位置(上下移动)按钮,按“精细”可以进行粗调与细调切换,按下则回到中点位置 1通道Menu 打开或关闭通道1波形及菜单 1通道Scale 旋动按钮可调节通道1波形的垂直刻度大小,按下则调节的刻度变为精细,例如:原来转动1V/格,按下后变为50mV/格 1通道 接探头接口 2通道Position垂直位置(上下移动)按钮,按“精细”可以进行粗调与细调切换,按下则回到中点位置 2通道Menu 打开或关闭通道1波形及菜单 2通道Scale 旋动按钮可调节通道1波形的垂直刻度大小,按下则调节的刻度变为精细 2通道 接探头接口 3通道Position垂直位置(上下移动)按钮,按“精细”可以进行粗调与细调切换,按下则回到中点位置 3通道Menu 打开或关闭通道1波形及菜单 3通道Scale 旋动按钮可调节通道1波形的垂直刻度大小,按下则调节的刻度变为精细 3通道 接探头接口 4通道Position垂直位置(上下移动)按钮,按“精细”可以进行粗调与细调切换,按下则回到中点位置 4通道Menu 打开或关闭通道1波形及菜单 4通道Scale 旋动按钮可调节通道1波形的垂直刻度大小,按下则调节的刻度变为精细 4通道 接探头接口 GND 用来较准探头时接的地接口 ROPRBE COMP=2.5V方波 用来较准探头时用的,会输出一个1KHz,2.5V的标准方波信号 电源开关键键,用来开关示波器电源的通断 外接USB接口,插上U盘后按Save键就可以保存屏幕上的波形,也可以接其它外设 Save/Recall Save 保存 用来保存波形或数据时按此按钮 Save/Recall Menu 菜单 用来设置存储的类型

总结

———————————————— 版权声明:本文为CSDN博主「holly_huang」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。 原文链接:https://blog.csdn.net/huangling07031190/article/details/107099081

优惠劵

Coisini_ye

关注

关注

12

点赞

107

收藏

觉得还不错?

一键收藏

知道了

0

评论

示波器面板按键说明

示波器面板按键说明

复制链接

扫一扫

示波器说明书(英文详细版)

04-18

详细介绍了示波器及其使用方法。

TDS1000B and TDS2000B Series Digital Storage Oscilloscope

User Manual.

示波器使用指导

qq_42202467的博客

03-16

2319

如果待测的信号为高频(几十MHz)信号,用示波器测试的时候要做到地线的连接尽可能短,否则会由于探头的接地线同探头的尖头构成的环路形成天线,将待测点附近的高频信号(空间的无线电波、板子上开关信号辐射)接收下来叠加在待测信号上,会给自己的调试带来很大的干扰。接下来,设置好探头的衰减,一般常用的是10X,它是很多场合最佳的选择,如果你要测量幅度比较小的信号,可以设置在1X档(公司里的这台的探头没有相关功能)。先根据需要选择一个合适的探头,对于多数测量的信号来讲,你购买的仪器里随带的简单的无源探头就可以用了。

参与评论

您还未登录,请先

登录

后发表或查看评论

示波器使用方法,正确使用示波器

qingfeng_博客

05-22

3万+

技新网的示波器视频介绍真心不错,请点击我直达。

课程内容

示波器波形怎么看

Cursor光标测量键的使用

触发电平旋钮让一个抖动的波形稳定

如何使用示波器的触发功能

用示波器探头上的调节旋钮来校准探头

示波器探头上10X和1X的含义

转载-- https://zhidao.baidu.com/question/430133298465166092.html

示波器是电子线路检测...

模拟示波器的使用简介

01-20

模拟示波器的使用简介

        一、模拟示波器的调整模拟示波器的调整和使用方法基本相同,现以MOS-620/640双踪示波器为例介绍如下:

  1、MOS-620/640双踪示波器前面板简介MOS-620/640双踪示波器的调节旋钮、开关、按键及连接器等都位于前面板上,如图6.1.27所示,其作用如下:

  (1)示波管操作部分

  6——“POWER”:主电源开关及指示灯。按下此开关,其左侧的发光二极管指示灯5亮,表明电源已接通。

  2——“INTEN”:亮度调节钮。调节轨迹或光点的亮度。

  3——“FOCUS

泰克示波器MDO3000-系列-用户手册

10-10

泰克示波器MDO3000 中文版示波器说明书,根据上面说的来使用一下简单多了

【示波器的基本使用】以及【示波器按键面板上各个按键含义的介绍】

热门推荐

Ace's Blog

10-29

6万+

文章目录一、面板按钮介绍1.1 面板介绍1.2 面板从上至下、从左至右,各常用按钮作用简述如下:1.2.1 【最上面一排按钮】:(1)【通用旋钮】【选择(Select)】【精细(Fine)】:(2)【光标】:(3)【亮度】:(4)【自动设置(Autoset)】:(5)【Signle】:(6)【Run/Stop】:1.2.2 【Wave Inspector栏】(1)【测量(Measure)】:(2)【搜索(Search)】:(3)【测试(Test)】:(4)【放大镜】:(5)【设置/清除(▶/‖)】:(6)【

【elabsim 示波器】基本使用以及示波器按键面板上主要按键含义的介绍

m0_52474147的博客

10-02

5874

【elabsim 示波器】基本使用以及示波器按键面板上主要按键含义的介绍。1.左下角 on/off开关2. 接入信号口1/22.1position旋钮 (用于调节波形图上下位置)2.2VOLTS/DIV旋钮(用于调节波形图的电压分度值)2.3CH1/2 信号接入口2.4 CHIMENU1/2按钮(用于选择观察CH1/2波形)3.时间坐标轴相关按钮3.1 position旋钮 (用于调节时间坐标轴位置)3.2 SEC/DIV旋钮 (用于调节时间单位大小)

【仪器使用操作笔记】 TDS1012示波器基础原理与使用

qq_64257614的博客

06-11

3690

学习使用老旧战损版示波器,型号为TDS1012,0基础可学会,觉得有用就收藏吧

一周玩转示波器(六)

05-09

2478

在电子信息通信类专业学习中,大家都会接触到示波器,之前本人也在各种论坛、博客以及星球内上传过各种示波器的教程。但是发现还是有很多大侠提议需要连载篇来督促自己每日的学习。"FPGA技术江湖"就是这么一个宠粉的公众号,那就满足各位大侠的需求,将相关的教程以及学习资料整理整合后变成了“一周玩转示波器”。每日十分钟,坚持下去,量变成质变。

今天给大侠带来一周玩转示波器,开启进阶篇,第六篇,抓图和认识触发系统(触发源、触发电平、触发类型、触发抑制时间、触发耦合、触发模式、单次触发(Single /Single SE

示波器的基本使用

xiangyuqxq的专栏

02-13

4483

(1)对于一般信号,采用AUTO键就可以得到其基本的波形信息,按MEASURE键可以显示诸如频率周期等波形参数信息。RUN/STOP则是使能动态画面和静止画面的按钮。

(2)水平的SCALE非常重要,用来调试时间轴。如果要看微观波形信息,时间轴单位越小越好,比如比对时延,上升沿和下降沿,这时要向左旋钮;如果要看宏观信息,时间轴单位越大越好,比如看复位波形,上电波形,这时要向右旋钮。

TDS1001B示波器详细图解使用教程

04-09

TDS1001B示波器的详细图解使用教程,讲解全面,详细明了,可以让你快速上手TDS1001B示波器

泰克示波器基本操作和按键详释

01-24

泰克示波器是目前使用较为多的一款示波器,如何能较好地使用它时需要好好掌握的.

简易示波器原理图和PCB设计

09-03

疫情期间闲来无事,正好学习STM32F407,因此设计、制作了简易示波器,以助学习。

1、原理图

(1)单片机,选择STM32F407VET6,采用SWD方式仿真及程序烧写。五路独立按键和两个LED指示灯;ADC PA5端口,定时采样;

(2)程控放大电路,使用继电器和运放组成,实现不同放大倍数;

(3)显示面板采用3.2寸TFT液晶屏。使用FSMC接口,9341驱动;

(4)串口通信,用于与上位机通信,实现虚拟示波器功能。

2、PCB

(1)绘制、下载了元器件封装;

(2)合理布局器件;

(3)人工布线;

3、指标:

(1)供电:DC24V;

(2) 通道数:1

(3)采样频率:大于1M/s

(4) 电压测量范围:±66V

(原创设计,严禁商业用途)

关键词:STM32;简易示波器;程控放大电路;PCB设计;原理图设计

元器件应用中的模拟示波器的使用简介

10-15

模拟示波器的使用简介

        一、模拟示波器的调整模拟示波器的调整和使用方法基本相同,现以MOS-620/640双踪示波器为例介绍如下:

  1、MOS-620/640双踪示波器前面板简介MOS-620/640双踪示波器的调节旋钮、开关、按键及连接器等都位于前面板上,如图6.1.27所示,其作用如下:

  (1)示波管操作部分

  6——“POWER”:主电源开关及指示灯。按下此开关,其左侧的发光二极管指示灯5亮,表明电源已接通。

  2——“INTEN”:亮度调节钮。调节轨迹或光点的亮度。

  3——“FOCUS

珠宝首饰销售管理系统》是一款用于珠宝首饰销售企业的管理系统,实现了对产品的实际情况的准确掌握.zip

最新发布

03-07

人工智能-项目实践-信息管理系统

二轴机械手_零件图_机械工程图_机械三维3D设计图打包下载.rar

03-07

二轴机械手_零件图_机械工程图_机械三维3D设计图打包下载.rar

月子中心管理系统》是一款专为月子服务中心、母婴护理等场所开发的一款管理软件.zip

03-07

人工智能-项目实践-信息管理系统

ASP.NET视频点播系统的设计与实现(源代码+论文).zip

03-07

ASP.NET视频点播系统的设计与实现(源代码+论文).zip

毕业设计-基于SpringBoot的相亲网站-设计与实现(源码+LW+PPT+演示视频).zip

03-07

【项目技术】

开发语言:Java

框架:springboot

架构:B/S

数据库:mysql

相亲网站可以实现婚礼公司管理,婚礼公司收藏管理, 婚礼公司预约管理,结婚案例管理,结婚案例收藏管理,用户管理,相亲管理,相亲留言管理,相亲收藏管理等功能。该系统采用了Mysql数据库,Java语言,Spring Boot框架等技术进行编程实现。

相亲网站可以提高相亲信息管理问题的解决效率,优化相亲信息处理流程,保证相亲信息数据的安全,它是一个非常可靠,非常安全的应用程序。

关键词:相亲网站;Mysql数据库;Java语言

关键词:相亲网站;Mysql数据库;Java语言

关键词:相亲网站;Mysql数据库;Java语言

关键词:相亲网站;Mysql数据库;Java语言

安捷伦示波器86100c面板说明

02-05

安捷伦示波器86100C是一种高性能数字通信测试仪器,广泛应用于数据通信、光通信和无线通信等领域。其面板设计简洁、直观,下面是对86100C面板说明的简要介绍:

86100C面板上主要分为两部分:上方为显示屏,下方为控制面板。

显示屏:86100C采用高分辨率彩色液晶显示屏,显示效果清晰,可同时显示多路信号,并具备放大、测量、调整等功能。用户可通过显示屏观察到信号的波形、频谱、时钟等信息,以及测试结果和测量参数。

控制面板:86100C的控制面板位于显示屏下方,包括按键、旋钮和输入接口等控制元件。

按键:控制面板上布置了一些常用的按键,如电源开关、测量参数选择、测量模式切换等。用户可以通过按键进行仪器的开关机、信号源选择、垂直量程调整、触发设置等操作,简单方便。

旋钮:86100C的控制面板上还配备了旋钮,用于调整参数的精确设置,如时间基准、水平位置、量程等。通过旋钮的旋转,用户能够方便地调整仪器的各种参数,提高测试的准确性。

输入接口:86100C的控制面板还包含了几个输入接口,用于连接外部信号源或数据源,实现信号的输入和输出,以及与其他设备的通信。

总体来说,安捷伦示波器86100C面板设计直观、用户友好,操作简便。无论是主要功能的选择,还是参数的调整,用户都能够通过面板上的按键、旋钮和输入接口完成相关设置,实现对信号进行精确的测试和分析。

“相关推荐”对你有帮助么?

非常没帮助

没帮助

一般

有帮助

非常有帮助

提交

Coisini_ye

CSDN认证博客专家

CSDN认证企业博客

码龄3年

暂无认证

2

原创

117万+

周排名

50万+

总排名

3万+

访问

等级

39

积分

4

粉丝

15

获赞

0

评论

128

收藏

私信

关注

热门文章

示波器面板按键说明

29950

函数发生器的使用方法

5834

万用表——最详细使用教程

3005

您愿意向朋友推荐“博客详情页”吗?

强烈不推荐

不推荐

一般般

推荐

强烈推荐

提交

最新文章

万用表——最详细使用教程

函数发生器的使用方法

2022年3篇

目录

目录

最新文章

万用表——最详细使用教程

函数发生器的使用方法

2022年3篇

目录

评论

被折叠的  条评论

为什么被折叠?

到【灌水乐园】发言

查看更多评论

添加红包

祝福语

请填写红包祝福语或标题

红包数量

红包个数最小为10个

红包总金额

红包金额最低5元

余额支付

当前余额3.43元

前往充值 >

需支付:10.00元

取消

确定

下一步

知道了

成就一亿技术人!

领取后你会自动成为博主和红包主的粉丝

规则

hope_wisdom 发出的红包

实付元

使用余额支付

点击重新获取

扫码支付

钱包余额

0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。 2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值

【示波器的基本使用】以及【示波器按键面板上各个按键含义的介绍】-电子工程世界

【示波器的基本使用】以及【示波器按键面板上各个按键含义的介绍】-电子工程世界

|首页|

电子技术|

电子产品应用|

电子头条|

社区|

论坛

测评

博客

电子技术视频|

下载|

参考设计|

Datasheet|

活动|

技术直播|

datasheet

datasheet

文章

搜索

|首页|

电子技术|

电子产品应用|

电子头条|

论坛|

大学堂|

下载|

参考设计|

Datasheet|

活动|

技术直播|

datasheet

datasheet

文章

搜索

测试测量

测试测量>信号源与示波器> 【示波器的基本使用】以及【示波器按键面板上各个按键含义的介绍】

【示波器的基本使用】以及【示波器按键面板上各个按键含义的介绍】

发布者:asd999ddd最新更新时间:2022-06-06

来源: eefocus关键字:示波器  基本使用

手机看文章

扫描二维码随时随地手机看文章

收藏

评论

分享到

微博

QQ

微信

LinkedIn

因为平时硬件用的不是特别多,每次使用完示波器,过段时间就又忘了,在此记录示波器的一些基本用法,以供后续查阅回忆。文档会不定期进行更新。一、面板按钮介绍1.1 面板介绍如下图:1.2 面板从上至下、从左至右,各常用按钮作用简述如下:1.2.1 【最上面一排按钮】:(1)【通用旋钮】【选择(Select)】【精细(Fine)】:【通用旋钮】:通用配置轮询选择按钮,旋转按钮可以轮询选择各种屏幕参数。例如1:  当【光标】打开的时候,旋转两个旋钮可以分别移动【光标a】与【光标b】的位置。例如2:  当按下【触发栏】中的【菜单】按键,屏幕左下方出现一排可选参数,  按下最左边【触发类型按钮】,出现很多可选项弹窗,  此时,旋转【通用旋钮】,就可以轮询选择各个参数。【选择(Select)】:可以调整两个光标联动or单动,按一按扭一扭就会懂什么是联动了,此处不多赘述。【精细(Fine)】:设置旋转通用旋钮时,光标移动的"快慢"程度。(2)【光标】:按下光标按键屏幕上会显示光标,有【横向光标】和【纵向光标】。长按【光标】,屏幕下方会出现【光标参数设置】,包括【光标/波形】、【是否联动】、【水平光标/垂直光标】等。(3)【亮度】:应该是设置屏幕上波形与光标亮度吧,不太清楚,没太用过。(4)【自动设置(Autoset)】:配合右边按键面板右下方的【power】和【GND】可以自动设置出方波,自动设置探针合适的波形。常常在探针参数调整的不成样子的时候,想要一键恢复常规设置的时候使用,具体方法见;【二、自动设置(复位)【Autoset】】小节。(5)【Signle】:暂时不动,后续补充。(6)【Run/Stop】:【按下,绿灯亮】,即:Run,表示实时显示当前波形状态【弹起,红灯亮】,即:Stop,表示停在当前面板波形状态,当抓取波形以后,想要对波形进行各种骚操作,又不想用指针一直怼着探测点,就可以使用该功能固定住当前波形。1.2.2 【Wave Inspector栏】暂时没用过,不太会用,以后再做补充(1)【测量(Measure)】:(2)【搜索(Search)】:(3)【测试(Test)】:(4)【放大镜】:(5)【设置/清除(▶/‖)】:(6)【旋钮(平移/缩放)】:(7)【←】:(8)【Set/Clear】:(9)【→】:1.2.3 【水平栏】(1)【位置】:左右旋转调整屏幕上探针信号的位置。按下以后信号波形居中。(2)【采集】:用的很少,不太懂,没怎么用过。(3)【标度】:左右旋转设置探针信号的时间宽度,可以简单理解为波形周期长短(即:波形拉宽、拉窄的骚操作)。1.2.4 【触发栏】(1)【菜单】:抓取波形时,按下菜单按键,屏幕下方会弹出一系列参数设置,通过设置这些参数调整要抓取波形的合适参数。(2)【旋钮】:按下:复位之前在【菜单】中设置的波形抓取参数。旋转:调整抓取波形的【触发电平阈值】。(3)【强制触发】:1.2.5 【垂直栏】1.2.5.1 左边一列:(1)【数学(M)】:(2)【参考波形®】:(3)【总线(B1)】:(4)【总线(B2)】:(5)【AFG】:1.2.5.2 中间探针通道选择:(1)【1】,通道1:按下在屏幕上显示1号通道探针信号线。(2)【2】,通道2:按下在屏幕上显示2号通道探针信号线。(3)【3】,通道3:按下在屏幕上显示3号通道探针信号线。(4)【4】,通道4:按下在屏幕上显示4号通道探针信号线。(5)【通道2个旋钮:上旋钮】:旋转上面旋钮,可以上下移动探针信号波形的位置。按下将信号波形居中。(6)【通道2个旋钮:下旋钮】:旋转下面旋钮,可以调整纵向方格的刻度,如1V、2V、5V等,(即:波形的拉高、拉低的骚操作)。二、自动设置【Autoset】使用示波器探针的时候,有时候觉得参数被调整的不成样子,可以通过【Autoset】按键来自动设置探针。步骤如下:1、示波器开机,并按下对应探针通道按钮,打开探针,此处我用的2通道。2、将探针正负极分别接到示波器右下方【power】和【GND】。3、按下面板上【Autoset】按键。4、出现方波,即可正常使用了。5、备注:  通道旁有2个旋钮:【位置】【标度】    旋转【位置】旋钮:可以调整波形上下移动;    旋转【标度】旋钮:可以调试探针测试电压方格子的刻度:1V、2V、5V等。6、如下图:三、抓取波形(简称:抓波)当需要抓取波形的时候,可以设置探针电压触发阈值,当电压大于某个电压点,直接锁定显示,步骤如下:1、可选步骤:先进行【自动设置(Autoset)】操作,根据需要调整好电压刻度便于观察(如:抓取3.3v可以将刻度调为2v)。2、在要抓取的电压点将探针固定好。3、开始设置抓波参数:按下【触发栏】中的菜单按钮,屏幕下方出现一排抓波参数,有边沿、斜率、电平、模式等。4、触发类型设置:按下屏幕下方最左边按钮【类型】(即:触发类型),通过旋转【通用栏】的旋钮,选择【边沿触发】。5、触发方式设置:轮询按下【斜率】按键,依次选择:上升沿、下降沿、双边触发。6、触发电平阈值设置:旋转【触发栏】的【电平旋钮】,设置电平阈值。  备注:电压阈值大小在屏幕下方【电平】按钮处会数字显示。7、触发模式设置:屏幕下方最后边按键为【触发模式】:设置为【正常】。  备注:  【自动(无触发滚动)】:表示每次触发不会锁死当前触发的波形(即:触发的波形会转瞬即逝),也可以按一下该按键用来清空抓取到的波形。  【正常】:设置为正常以后,每次触发以后,波形会锁定在当前界面不动,如果波形不停地出现,则每次触发会滚动覆盖前一次抓取的波形(即:触发滚动)。8、板卡上电or给测试点输送波形,开始抓波。如果出现符合条件的波形,屏幕波形就会直接锁定,如下图。9、按下按键面板右上角【Run/Stop】(按下后变红色)锁死当前抓取到的波形。  然后可以通过一系列诸如:放大、缩小、移动、测量、居中、周期计算等一系列骚操作来操作波形了。9、测试完成后,通过按键弹起【Run/Stop】(变绿色)显示实时波形,然后按下屏幕下方最右侧【模式】按钮,设置为【自动(无触发滚动)】模式,来清空当前抓取到的波形,以便进行下一次抓取。10、如下图:

关键字:示波器  基本使用

引用地址:【示波器的基本使用】以及【示波器按键面板上各个按键含义的介绍】

上一篇:示波器地线应用注意问题

下一篇:数字存储示波器基本工作原理与使用方法

推荐阅读最新更新时间:2024-03-08 15:35

你知道示波器由哪几部分组成的吗

你知道示波器由哪几部分组成的吗 都说示波器是电子工程师的眼睛,那你知道示波器由哪几部分组成的吗?今天安泰测试就简单给大家介绍一下。 示波器的主要部分有示波管、带衰减器的Y轴放大器、带衰减器的X轴放大器、扫描发生器(锯齿波发生器)、触发同步和电源等,其结构方框图如图所示。为了适应各种测量的要求,示波器的电路组成是多样而复杂的,这里仅就主要部分加以介绍: 一、示波管 如上图所示,示波管主要包括电子枪、偏转系统和荧光屏三部分,全都密封在玻璃外壳内,里面抽成高真空。下面分别说明各部分的作用。 1、荧光屏:它是示波器的显示部分,当加速聚焦后的电子打到荧光上时,屏上所涂的荧光物质就会发光,从而显示出电子束的位置。当电子停止作用后,荧光

[测试测量]

利用软件和简单电路就能把电脑音效卡变成示波器

举例来说,你有没有使用过Arduino来操控伺服机,而需要精确的脉宽调变来决定顺时针旋转或逆时针旋转的时候?有了示波器,编写程式时,就可以得知目前的脉宽和需要的脉宽还差多少;处理类比信号时,也可以检测目前的频率和目标频率的差距,或者测量需要过滤什么频率。数字电子装置为数众多,信号的时差变得极为重要,因此需要有示波器时时检测。    基本上,示波器是一种能记录电路上电压的资料撷取装置。电脑上有另一个装置也有这个功能,那就是音效卡,主要差别在于两者所能处理的电压以及测量电压的频率(稍后详细讨论)。因为电脑上的音效卡只能处理较低的电压(约 /- .6V到 .8V),所以要把电压调低。成功制作示波器探针的要点在于:容纳更高电压的输入

[测试测量]

示波器对电气快速瞬变事件的检测分析

你还可以检测到由EFT事件造成的“矮”脉冲,并最终计算出一个EFT脉冲的能量。利用这些信息,就可以对设计进行修改以提高抗EFT干扰性能。EFT事件是在电流瞬时中断的情况下发生的,会在触点之间形成电弧放电,进而破坏电路和系统。电弧产生的电磁场会通过电缆、走线和连接器耦合进电路通道。引起EFT事件的常见原因包括继电器触点颤动、断路器的打开和闭合、电感负载的切换以及设备断电。电触点之间气隙的击穿也常常会触发EFT脉冲的快速爆发。 顺序捕获 若要捕获一连串的快速脉冲(如EFT 脉冲) 或被长时间间隔的事件窄片( 比如EFT突发脉冲串),顺序采集是一种理想的方法。在顺序捕获模式下,示波器可以显示由许多固定大小的分段组成的完整波形。通

[测试测量]

分析基于计算机labview的示波器远程控制架构步骤与方法

  我们知道,现在的数字示波器可以准确捕获各种周期信号、非周期信号,数字示波器已成为科研实验和工程项目中各类信号采集、记录和分析的最主要设备之一。由于很多情况下,需要把数字示波器采集到的数据进行数据处理和分析,最终完成远程的自动测试和分析的需求。因此对示波器进行远程自动控制,实现对示波器的各项功能的自动操作和对数据的处理已成为很多科研实验和工程项目必需的环节。   最近,我经常接到很多工程师的询问有关如何控制示波器的电话。下面就来谈谈计算机控制示波器的步骤和方法,并利用实例进行分析和讲解。   1. 系统硬件构架   计算机通过GPIB或 LAN(网口)与示波器建立连接来控制示波器,其系统的硬件构架图见图1。      图1

[测试测量]

示波器探头的具体操作与校准方法

  示波器是一种用处十分普遍的电子测量仪器,它可以把眼睛看不清的电子信号转换成可以看到的图象。示波器探头对测定效果的准确度及其准确性尤为重要,它是联接被测电源电路与示波器键入的电子器件构件。下面,为大家具体讲解下示波器探头操作方法和示波器探头校准。   一、示波器探头使用方法   探头在应用前应当先对其阻抗匹配一部分开展调节。通常在探头的挨近示波器一端有一个可调式电容器,有一些探头在挨近探头一端也具备可调式电容器。他们是用于调节示波器探头的阻抗匹配的。假如特性阻抗不搭配得话,精确测量到的波型可能形变。调节示波器探头操作方法如下所示:   示波器探头怎么用   1、将示波器的键入挑选打在GND上,随后调节Y轴偏移旋纽使扫描线发生

[测试测量]

示波器电流探头的使用方法及注意事项

示波器电流探头简单地测量电流通过tekr0bebnc接口.直接与tds系列示波器相连分芯芯结构,可以简便地接入电路dc到50mhz带宽15安dc十峰值ac电流50安峰值脉冲电流500*0.000001(安培-秒)。 示波器电流探头的使用方法 A电容测试时使用的导线应选用横截面面积05mm2(AWG20)以上的导线 B将待测电容连接上导线时要将电容移动至基板的锡面侧,利用A和B方法测定,此外,尽可能的将导线缩短。 纹波电流测试示波器调试方法 A.调试 1.将对应的测试通道探头设置为电流,选择测是耦合直流档位。 2将宽带选为20MHZ。 3调试示波器屏幕显示测量值均方根最大值峰峰值频率四个测量项目。 B纹波电流测试前需对电流探

[测试测量]

普源示波器常见故障及解决方案

示波器如同电子工程师的眼睛,在电子工程师工作中发挥着至关重要的作用。普源示波器作为国产示波器中的佼佼者,受到越来越多客户的青睐,但仪器使用过程中难免会遇到一些问题,今天普源一级代理商——安泰测试列举了普源示波器在使用过程中可能出现的故障及排查方法。当您遇到这些故障时,请按照相应的步骤进行处理,如不能处理,请与安泰测试或者普源厂家联系,同时请提供您机器的设备信息。 1. 仪器无法正常开机 (1) 检查电源线是否已正确连接。 (2) 升级软件。 (3) 按前面板 Default 键,将仪器设置恢复至出厂默认设置。 (4) 重启仪器。 2. 连接电源线后,电源开关键不亮 (1) 检查保险丝是否熔断。 3. 屏幕中未出现信号的波形 (

[测试测量]

混合信号数字示波器支持实时眼图测量和抖动分析

普源示波器MSO8000系列是基于RIGOL自主知识产权的ASIC芯片和UltraVisionII技术平台的中高端混合信号数字示波器。示波器模拟通道带宽高达2GHz,集7种仪器于一身,具有500Mpts超大存储深度、良好的波形显示效果、优异的波形捕获率和强大的数据分析功能,多项指标均达业界一流水平,并且支持实时眼图测量和抖动分析,是业内最具性价比优势的2GHz混合信号数字示波器。 主要特色: 模拟通道带宽:600 MHz、1 GHz和2 GHz(单通道和半通道模式) 4个模拟通道,1个EXT通道,标配16个数字通道(需选购探头) 实时采样率最高达10 GSa/s 最高存储深度达500 Mpts(标配) 波形捕获率高于600,0

[测试测量]

热门资源推荐

热门放大器推荐

更多

 独辟蹊径品内核: Linux 内核源代码导读

 工业人工智能 (蔡红霞, 周传宏)

 红外探测器(原书第2版)

 华中数控系统装调与实训

 开关电源仿真与设计基于SPICE 第2版 高频电路基础 线性系统理论 (第2版) python从入门到实践

 EL5167ICZ-T7

 EL2125CW-T7A

 TS3V902AID

 UA747FMQB

 MCP6004T-E/STVAO

 INA327IDGSR

 LT6012CS#TRPBF

 LTC2053HMS8#TRPBF

小广播

添点儿料...

无论热点新闻、行业分析、技术干货……

发布文章

推荐内容

如何利用现代示波器实现准确测量(二)

研讨会 : Tektronix 嵌入式系统调试及混合信号系统验证测试中示波器的使用

Tektronix 用混合信号示波器探索总线的秘密

泰克MDO3000混合域示波器的测量应用

玩转示波器,2017年是德科技干货教程汇总

【电路】用于数字面板表的5输出变换器电路图

【电路】JDW91-10型外定位冲槽机电气箱面板接线图

【电路】新中兴数显智能电动机保护器面板图

【电路】九位按键式密码锁电路

【电路】按键消抖电路图解

【电路】单按键双通道红外遥控器电路

热门活动换一批更多

■报名赢【养生壶、鼠标】等|STM32 Summit全球在线大会邀您一起解读STM32方案

■有奖征文:邀一线汽车VCU/MCU开发工程师,分享开发经验、难题、成长之路等

■泰克 MSO6B 探索营:技术指标大挑战,闯关赢好礼

■有奖直播:ADI 惯性 MEMS 传感器的应用价值与选型

■MPS电机研究院 让电机更听话的秘密! 第一站:电机应用知识大考!第三期考题上线,跟帖赢好礼~

■最能打的国产芯们

■村田在线课堂:移动篇

最新测试测量文章

【做信号链,你需要了解的高速信号知识(一)】为什么要使用LVDS或JESD204B标准?信号链是连接真实世界和数字世界的桥梁。随着ADC采样率和采样精度的提升,接口芯片的信号传输速度也越来 ...

如何通过接地摇表测量接地电阻?电力系统中电气设备接地的目的是为了保证人身和电气设备的安全以及设备的正常工作。接地电阻的测量通过接地电阻表(又称为接地电阻测试仪) ...

FLIR推出声学成像仪,助力快速定位气体泄漏与机械故障FLIR,这家以热成像技术著称的公司,最近宣布推出了一款新型的成像仪,它能够让不可见的事物变得可见。不过,这一次,FLIR并不是利用热数据 ...

【泰克应用分享】实现示波器同步以获得更高通道数时需要考虑的三件事构建测试系统时,可能需要测量多个信号,此时仅依靠一个示波器的可用通道可能无法完全捕获所有信号。要增加测试系统中的示波器通道数量,常 ...

是德科技发布无线测试平台, 加速Wi-Fi 7性能测试是德科技发布无线测试平台, 加速Wi-Fi 7性能测试•一站式解决方案能够仿真 Wi-Fi 设备和网络流量,全面覆盖最新 IEEE 802 11be 标 ...

e络盟开售NI LabVIEW+套件,加速测试产品上市

是德科技推出领先的基准测试解决方案以加快部署人工智能基础设施

客户案例 | 多通道数模转换器ADC动静态参数测试解决方案

是德科技与 Intel Foundry 强强联手,成功验证支持 Intel 18A 工艺技术的电磁仿真软件

更多精选电路图

电容降压限流式电源

24V降为12V开关型电源变换器

用MC1455PIG制作自动循环发光二极管电路

18W音频放大器的电路图

基于THS3001的扩压电路

一个带有闪烁LED的门铃电路

换一换

更多

相关热搜器件

 STEF12SPUR

 IAUC100N08S5N031ATMA1

 DR6760D75P

 1N6004BRA2

 A2TPMI336OCC

 REC20-2412SRWBH

 GSC25DG

 RMC19DTEH

 51704-30612806C0LF

 461-LRG5H-NWO

 XLH526058.982400I

 3PS12.6

 ML2S170

 BU-61580S3-432Y

 RSB6VM31130115

 SN74HC158N-00

 M58WR064KU60ZA6E

 LTGQC503-TW-W-R/250N

 F1740-368-3581-E3

 VTC1-B2BE-12M600

 MTMS-125-51-G-D-000

 VTD3-H3CE-15M36

 98836-134HLF

 SWW237A-6X1159U621/4U4602

 WW324.31%R

 2225J2500102JQT

 CC1206KKX7RABN681

 FO1003P-06-1W081048

 OSTV7190230

 7201P1Y1ZBES

 BF130-08B-2-0250-0250-0250-L-D

 LD105C273JAB4A

 DRF-A15S-I-322

 2225SC682MAZ1A

 WSF4527158R0DEEK

 GP52S-1562-CT25

 BD52E38G-MTR

 H2512CA2213DHW

 HMTSW-150-07-S-D-0100-LL

 CY7C1394AV18

 PCNM1206K2211CSTS

 XC6116F038

 SFP4270ABKGGKWS

 BN3200EIAXOFD-PF

 203-2.048M-13-20G-TR

 PCF2512-11-9K76WI

 HC49-4H/232JF20.2752MHZ

 1210Y0250104JBR

 E1UKA16-19.43125MTR

 GUB-GM8ALF-01-1132-F-A

更多热门文章

STM32 上使用 USB Host 读写 U 盘

高通新任CEO安蒙:数字底盘将成就未来汽车

ZDS2022示波器的模板触发是什么原理?

通过CHNet-Q实现以太网通信及ModbusTCP配置方法

电流表电压表的运用方法

WT2003HX语音芯片IC应用于红外遥控玩具的方案

CHINAPLAS 2023国际橡塑展:SABIC推出创新解决方案,引领行业迈向可持续未来

在测试点中增加示波器对测量有何影响?

更多每日新闻

宁德时代领跑全球动力电池,1月海外汽车动力电池增长30.1%!

CAN总线故障分几种?如何检测

一文读懂车载存储芯片

中国各大车企智能驾驶能力排名公布

贸泽电子开售支持图像处理和边缘AI加速的Advantech VEGA-P110 PCIe Intel Arc A370M嵌入式GPU卡

FP6276兼容G5177C,高效5V2A同步PWM升压DC转换器

基于CW32L083的空调遥控器方案设计

FP6293内置MOS升压DC转换器,双节锂电池升压输出8.4V1A

FP6277单节锂电池升压输出5V3A,15W同步整流升压芯片

FP6298支持9V输出异步升压芯片,3-5V升压到5V/9V

更多往期活动

下载Vishay最新通信解决方案 赢取超赞移动电源

VISHAY新能源主题月,幸运闯关赢大奖!

“USB 3.1 规范及重要测试需考虑的因素”江湖令,一起在吐槽中成长

有奖直播报名:赛灵思和安富利专注嵌入式视觉应用,助力人工智能和汽车辅助驾驶!

【TI.com线上采购专场——智能楼宇篇】畅聊火爆的智能电子锁、可视化门铃、智能传感器和网络摄像头方案

激情竞赛日--看谁最给力!

你眼中的TI DSP有多么的与众不同?

有奖直播:迈来芯消费级超低功耗位置传感器,简化设计降低成本

厂商技术中心

TI 技术论坛

TI 在线培训

Qorvo 射频技术研习社

随便看看

想不想扒开平板电脑的皮?

论无线网络中的安全相关技术

直流电机的控制

CC2541 I2C EEPROM例程 AT24C512

load和run地址不同,是在什么时候处理的?

跪求用AT89C51做酒精测试仪

如何显示或隐藏输入面板?

是德科技注册抽奖3月23日- 3月25日获奖快报

锂电路保护芯片的放电流保护两个电压问题

多参量调试信号源二 基本介绍

About Us

关于我们

客户服务

联系方式

器件索引

网站地图

最新更新

手机版

站点相关:

信号源与示波器

分析仪

通信与网络

视频测试

虚拟仪器

高速串行测试

嵌入式系统

视频教程

其他技术

综合资讯

词云:

1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室

电话:(010)82350740

邮编:100190

电子工程世界版权所有

京B2-20211791

京ICP备10001474号-1

电信业务审批[2006]字第258号函

京公网安备 11010802033920号

Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved

示波器各按钮作用 - 百度文库

示波器各按钮作用 - 百度文库

首页

文档工具

更多

搜索文档

新客立减13元

客户端

看过

登录

.. 

;. 

一、常见示波器面板功能键、钮的标示及作用 1.POWER(电源开关):接通或关断整机输入电源。 2.FOCUS(聚焦)和

ASTIG(辅助聚焦):常为套轴电位器,

用于调整波形的清晰度。 3.ROTATION(扫描轨迹旋转控制):调整此旋钮可以使光迹和座标水平线平行。 4.ILLUM(坐标刻度照明):用于照亮内刻度坐标。 5.A/B INTEN(A/B亮度控制):通常为套轴电位器,作用是调节A和B扫描光迹的亮度。 6.CAL 

0.5Vp-p(校正信号输出):提供0.5Vp-p且从0电平开始的正向方波电压,用于

校正示波器。 7.VOLTS/div(电压量程选择):通常电压量程和幅度微调为套轴电位器,外调节旋钮是电压量程选择,转动此旋钮以改变电压量程;中间带开关的电位器为电压量程微调,顺时针旋到底为校正位置,逆时针调节,波形幅度,变化范围在电压/格两档之间。 8.CH1

和CH2(输入信号插座):为示波器提供输入信号。 9.AC GND 

DC(输入耦合开关):用于选择输入信号的耦合方式。 10.GRIG SEL(内同步选择):按下此键,以CH1和CH2分别作为内同步信号源。 11.CH POL(信号倒相):按下此键,输入信号倒相180°。 12.VERTICAL MODE(垂直工作方式选择):分别按下CH1、CH2、ALT、COHP、ADD、X-Y键,屏幕显示依次为CH1、CH2、

CH1和CH2交替、CH1和CH2断续、CH1和CH2代数和、CH1垂直/CH2水平等方式。 

13.POSITION(位移调节):调节CH1和CH2输入信号0电平在屏幕的起始位置。 14.UNCAL(不校正指示):当CH1和CH2电压量程微调不在校正位置时,对应的不校正

指示灯点亮。 15.TIME(扫描时间调整):外旋钮调节A扫描速度,内旋钮调节B扫描速度。 16.B.VAR、TRACE SEP(B

扫描微调和A/B扫描轨迹分离):

一般情况下,涂有红色的旋钮为B扫描微调,提供连续可变的非校正B扫描速度。 

17.DELAY TIME(扫描延迟时间调节):选择A和B扫描启动之间的延迟时间。 18.POSITION(水平位移控制):使显示波形作水平位移。 19.SWEEP MODE(触发同步方式):其中AUTO为自动触发、NORM为常态触发、HF为高频触发、SINGLE

为单扫描触发。 20.LEVEL HOLD OFF(电平和释抑调节):是电平调节触发同步后,使信号同步稳定的辅助调节器。 21.TRIG'D(触发同步状态指示):一旦

tektronix示波器各按键功能图

tektronix示波器各按键功能图

您好,欢迎您进入西安安泰测试设备有限公司官方网站!

网站地图  |

xml地图

热门关键词:

是德示波器

普源示波器

同惠lcr测试仪

首页

安泰简介

产品中心

解决方案

服务支持

安泰小课堂

新闻中心

联系我们

首页 > 新闻中心 > 技术专栏

新闻中心

公司动态

技术专栏

行业动态

热门搜索

普源信号发生器

泰克信号发生器

罗德与施瓦茨示波器

吉时利源表

同惠lcr测试仪

普源示波器

泰克示波器

是德示波器

解决方案

MIPI D-PHY物理层自动一致性测试

吉时利2450源表在薄膜材料电阻率测试中的应用

PCDF伤口敷料在不同条件下产生电压电流

吉时利6514在纳米发电机测试中的应用

R&S®SMW200A矢量信号发生器在EVM误差矢量幅度测试应用

同惠TH9310耐压测试仪测试方案

红外热像仪微距测试应用方案

忆阻器测试方案

吉时利2400源表在PIN硅辐射探测IV曲线测试应用

吉时利静电计6517B在电荷测量中的应用

热点资讯

信号发生器的使用方法

热成像仪的功能和作用

lcr电桥电感Ls和Lp的区别

示波器怎么测量频率

单级交流放大器的模电实验原理

示波器参数如何设置

LCR数字电桥测试仪功能及注意事项

示波器可以测量什么波形

吉时利源表-工作台上的无名英雄

示波器的使用步骤及注意事项

tektronix示波器各按键功能图

发布日期:2022-12-12 16:57:16         浏览数:

  

  使用或查看泰克示波器的人会注意到泰克示波器主面板上有多个按钮。MSO5204B混合信号示波器的主面板上有十几个按钮,一些手持波器上至少有一个按钮,如手持示波器RTH主面板上有一个按钮,1000系列。  对于经验丰富的工程师来说,这些按钮的功能被铭记在心,但一些示波器新手不知道这些按钮在获得示波器应用程序时的作用。虽然不同品牌的示波器同品牌和型号的示波器在主面板上的每个按钮都有不同的功能。但它们的一般功能确实相似。今天,安泰测试将向您介绍这些按钮的功能。以泰克示波器为例:  泰克示波器代理  按钮类型可分为以下11种,不同类型的按钮效果也不同。  1.扫描速度按钮可以改变示波器扫描线从左到右移动的速度。  2.电压选择按钮可改变输入电压,使示波器屏幕Y轴扫描线偏转。  3.上下调整按钮。左右调整按钮,可以改变扫描线在屏幕上左右两个方向的位置。TBS1202B在数字示波器中,旋转按钮改变扫描线的方向。  TBS1202B数字示波器  TBS1202B数字示波器  4.顺时针方向达到最大值的电压标准按钮状态为标准状态。其他位置为非标准状态。  5.扫描速度标准按钮状态为标准状态,顺时针方向达到最大值。其他位置为非标准状态。  6.作为同步按钮,它可以稳定示波器的波形。  7.CH2通道选择。CH2通道选择。  8.CH2信号同步选择键。  9.选择具有测量功能的开关进行测量和交流DC。DC。和接地GHD三种状态。当处于DC可以测量状态DC和交流信号。当处于交流状态时,当信号中DC当成分被电容器堵塞时,可以通过电容器测量交流成分。当接地时,示波器的测量接口与地面短路,外部信号不能进入示波器。  10.可以调节图像的亮度来调节亮度按钮。  11.对于聚焦调节按钮,该按钮的功能是使图像精细化。       以上就是tektronix示波器各按键功能图的相关介绍,如果您有更多疑问或需求可以关注安泰测试Agitek哦!非常荣幸为您排忧解难

Tag:

上一篇:红外热成像仪原理

下一篇:单级交流放大器的模电实验原理

相关文章

泰克mdo34示波器怎么测can

是德dsox2014a示波器电压如何测量

安捷伦示波器偏置电压如何设置

普源示波器怎么产生方波

泰克TBS1072C示波器测试纹波方法

泰克示波器如何测试PCIe眼图

泰克mdo34示波器滤波如何设置

是德dsox2012a示波器测电流

安捷伦示波器延时测试

普源示波器如何测量电压波形

相关产品

R&S®EZ-17电流探头

R&S®ESH2-Z3无源电压探头

N2140A无源探头

N2142A无源探头

关注公众号agitek了解更多安泰测试资讯

西安安泰测试设备有限公司 陕ICP备13006020号-5

地 址:西安市高新区高新四路17号志诚商务二楼       联系电话:18165377573      邮箱:948642678@qq.com

COPYRIGHT © 2017 西安安泰测试 ALL RIGHTS RESERVED

客服热线

181653775737*24小时客服服务热线

关注微信

关注官方微信

获取报价

获取最低报价

采购产品*

采购数量*

联系电话*

暂不需要

顶部